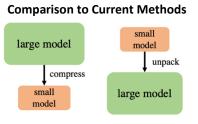


Compact and Optimal Deep Learning with Recurrent Parameter Generators

Stella X. Yu

Motivations and Overview

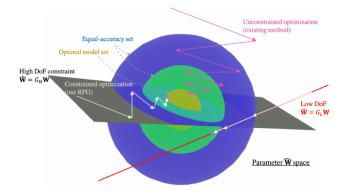
A novel approach to compact and optimal deep learning by decoupling model degree of freedom (DoF) and model parameters.



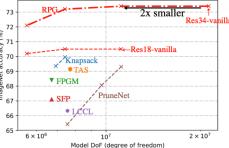
a) Existing methods first finds the optimal in a large model space and then compress it. **b)** We start with a small (DoF) model of free parameters, use recurrent parameter generator (RPG) to unpack them onto a large model with predefined

a) Existing method

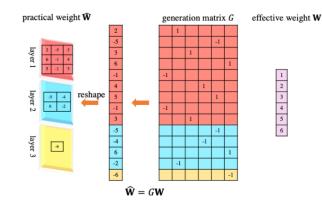
b) Our method (RPG) random linear projections.



Linearly constrained neural optimization: Gradient descent finds the optimal model of a small DoF under our linear constraints with faster converge than training the large unpacked model. If the DoF is too small, the optimal large model may fall out of the constrained subpsace. However, at a sufficiently large DoF, RPG gets rid of redundancy and often finds a model with little loss in accuracy.



Results: RPG achieves the same ImageNet accuracy with half of the ResNet-vanilla DoF. RPG also outperforms other state-of-the-art compression approaches.

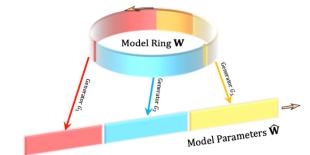


Recurrent Parameter Generator (RPG)

Yubei Chen*

Jiayun Wang*

Linearly Constrained Neural Optimization (general case) Networks are optimized with a linear constraint $\widehat{\mathbf{W}} = \mathbf{G}\mathbf{W}$, where the constrained parameter $\widehat{\mathbf{W}}$ of each network layer was generated by the generating matrix **G** from the free parameter **W**, which is directly optimized. \widehat{W} is unpacked large model parameter while the size of $\widehat{\mathbf{W}}$ is the model DoF.



Recurrent Parameter Generator (RPG, special case) RPG shares a fixed set of parameters in a ring and uses them to generate parameters of different parts of a neural network, whereas in the standard neural network, all the parameters are independent of each other, so the model gets bigger as it gets deeper. The third section of the model starts to overlap with the first section in the model ring, and all later layers share generating parameters for possibly multiple times.

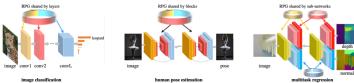
Destructive weight sharing: $G_i \in \{b \circ p | b \in B(N_i), p \in P(N_i)\}$

Random sign flip permutation

RPG Performs Better at the Same DoF

Yann LeCunn

Brian Cheung



We apply RPG to tasks including image classification, human pose estimation and multitask regression. RPGs are shared at multiple scales: a network can either have a global RPG or multiple local RPGs that are shared within blocks or sub-networks.

CIFAR100 and ImageNet Classification

Comparisons to baselines			Model DoF v.s. accurary				
	DoF	Acc. (%)	Acc. (%)		R18-RPG	r	R18-vanilla
R18-vanilla	11M	77.5	ImageNet	40.0	67.2	70.5	70.5
R34-RPG.blk	11M	78.5	CIFAR100	60.2	75.6	77.6	77.6
R34-RPG	11M	78.9	Model DoF	45K	2M	5.5M	11 M
R34-random weight share	11M	74.9	Acc. (%)	-1518	R34-RP0		R34-vanilla
R34-DeepCompression [23]	11M	72.2				-	
R34-Hash [42]	11M	75.6	ImageNet	41.6	69.1	73.4	73.4
R34-Lego [67]	11M	78.4	CIFAR100	61.7	76.5	78.9	79.1
R34-vanilla	21M	79.1	Model DoF	45K	2M	11M	21M

• ResNet-RPG outperforms existing DoF reduction methods on CIFAR100. Also, a global RPG outperforms block-wise local RPGs.

• ResNet-RPG consistently achieves higher performance

at the same model DoF.

Acc. (DoF)

1x sub-net

2x sub-nets

4x sub-nets

Pose	estimation	

CPM [62] RPG No shared w.		No shared w.	RMSE (%)	Depth	Normal		
	84.7 (3.3M)		Vanilla model	25.5	41.0		
86.1 (3.3M)	()	87.1 (6.7M)	RPG with shared BN	24.7	40.3		
· /	. ,	88.0 (13.3M)	Reuse & new BN	24.0	39.4		
00.5 (5.5141)	07.5 (5.5141)	00.0 (15.5141)	Reuse & new BN & perm. and reflect.	22.8	39.1		

Multi-Task Regression

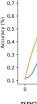
• RPG outperforms model at the same DoF for both pose estimation and multi-task regression on the Stanford 3D indoor scenes dataset.

RPG Increases the Model Generalizability

ImageNet train-val gap			pose estimation train-val gap				direct evaluation on ObjectNet					
Acc gap (%)	vanilla	RPG	Acc gap (%)	no shared w	shared w	RPG	,		R34-RPG	R34		
R18	-0.7	-2.7	2x sub-nets	1.15	1.13	0.64		DoF	11M	11M	21M	
R34	1.1	-2.3	4x sub-nets	1.98	1.70	1.15		Acc. (%)	13.4	16.5	16.0	(%

 ResNet-RPG has lower training-validation accuracy gap on ImageNet classification and pose estimation.

 ResNet with RPG has higher performance on out-of-distribution dataset ObjectNet. RPGis trained on ImageNet only and directly evaluated on ObjectNet.



* Indicates equal contribution

Accelerating RPG

RPG reduces model DoF. Could we prune or quantize it to reduce computation/inference time as well?

Pruning RPG

fine-grained pruning								
acc before acc after ↓ DoF acc drop model DoF								
R18-IMP [18]	92.3	90.5	1.8	274k				
R18-RPG	95.0	93.0	2.0	274k				

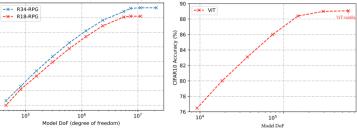
coarse-grained pruning

	DoF before pruning	Pruned acc.	FLOPs
R18-Knapsack	11.2M	69.35%	1.09e9
Pruned R18-RPG	5.6M	69.10%	1.09e9

Quantize RPG

	# Params	Acc before	Acc after \downarrow quantization	Acc drop
R18-vanilla	11M	69.8	69.5	0.3
R18-RPG	5.6M	70.2	70.1	0.1

Log-Linear DoF-Accuracy Relationship



 Accuracy and model DoF follow a power law for both CNN and ViT. • The exponents of the power laws are the same for ResNet18-RPG and ResNet34-RPG on ImageNet. The scaling law may be useful for estimating the network accuracy without training the network. • RPG enables under-parameterized models for large-scale datasets such as ImageNet, which may unleash new studies and findings. **RPG Converges Faster**

