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Abstract

Purpose
To examine and interpret machine learning models that predict dry eye (DE)-related clinical signs,
subjective symptoms, and clinician diagnoses by heavily weighting lifestyle factors in the predictions.

Methods
Machine learning models were trained to take clinical assessments of the ocular surface, eyelids, and
tear �lm, combined with symptom scores from validated questionnaire instruments for DE and clinician
diagnoses of ocular surface diseases, and perform a classi�cation into DE-related outcome categories.
Outcomes are presented for which the data-driven algorithm identi�ed subject characteristics, lifestyle,
behaviors, or environmental exposures as heavily weighted predictors. Models were assessed by 5-fold
cross-validation accuracy and class-wise statistics of the predictors.

Results
Age was a heavily weighted factor in predictions of eyelid notching, Line of Marx anterior displacement,
and �uorescein tear breakup time (FTBUT), as well as visual analog scale symptom ratings and a
clinician diagnosis of blepharitis. Comfortable contact lens wearing time was heavily weighted in
predictions of DE symptom ratings. Time spent in near work, alcohol consumption, exercise, and time
spent outdoors were heavily weighted predictors for several ocular signs and symptoms. Exposure to
airplane cabin environments and driving a car were predictors of DE-related symptoms but not clinical
signs. Prediction accuracies for DE-related symptoms ranged from 60.7–86.5%, for diagnoses from
73.7–80.1%, and for clinical signs from 66.9–98.7%.

Conclusions
The results emphasize the importance of lifestyle, subject, and environmental characteristics in the
etiology of ocular surface disease. Lifestyle factors should be taken into account in clinical research and
care to a far greater extent than has been the case to date.

INTRODUCTION
In the study of dry eye (DE), patient characteristics, lifestyle behaviors, and risk exposures have recently
emerged as critical to its etiology and to its diagnosis, treatment and management. While the vast
literature on DE and related ocular surface diseases has tended to focus on mechanisms of pathology,
development of diagnostic instruments both objective and subjective, and on treatment and
management, lifestyle factors have historically been secondary to most analyses, when they are included
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at all. Recently, the Tear Film and Ocular Surface Society (TFOS) workshop report described ocular
surface disease as a “lifestyle epidemic”,1 and interest in the impact of patient lifestyle and behaviors is
receiving renewed and much needed attention.

In recent years, arti�cial intelligence has proven to be a valuable tool in biomedical research and health
care, however the use of this technology in the study and management of ocular surface diseases like
DE has lagged behind its use in other aspects of vision such as retinal imaging.2 One area of nascent
advancement has been the detailed analysis of Meibomian gland morphology from infrared imaging of
the everted eyelids, known as meibography.3 Recent work has demonstrated the ability to use machine
learning models to quantify Meibomian gland morphological characteristics from meibography
imaging,4,5 and to combine the imaging results with patient lifestyle and behavioral factors, clinical
measurements, symptomatological assessments, and clinician diagnoses to predict outcomes related to
Meibomian gland dysfunction (MGD), DE, and other ocular surface pathology.6

When the most heavily weighted variables used by machine learning models to predict DE-related
outcomes are examined, many subject characteristics, lifestyle qualities, behavioral factors, and
associated environmental exposures play a prominent role. These emerging arti�cial intelligence models
can facilitate the discovery of novel relationships among clinical, lifestyle, and symptom variables, allow
examination of previously determined relationships from a new perspective, and generate new
hypotheses for further investigation.7,8 The importance of lifestyle factors in machine learning model
predictions of ocular surface disease-related outcomes is the focus of the current work.

METHODS
Subjects 18 years of age or older with no history of ocular surgery, no active ocular infections, and not
currently taking medications known to affect the anterior eye, eyelids or tear �lm were eligible for the
study. Both contact lens wearers and non-wearers were eligible. Informed consent was obtained from all
subjects. The study adhered to the tenets of the Declaration of Helsinki and was approved by the U.C.
Berkeley Committee for the Protection of Human Subjects. The study complied with the relevant
CONSORT-AI extension guidelines for clinical studies with an arti�cial intelligence component.

The machine learning methodology employed in this study is reported in detail elsewhere.6 Brie�y, a
machine learning prediction model was developed to segment Meibomian gland morphological features
from meibography images and combine them with subject characteristics, clinical assessments, and
symptom scores as inputs to a prediction model. The prediction model then performs classi�cations
into DE-related outcome categories using logistic regression. A depiction of the input features (i.e., the
subject, clinical, and symptom variables available as potential predictors) and the output features (i.e.,
the predicted DE-related outcome classes) is provided in Fig. 1. Some outcomes have natural predicted
classes, such as a diagnosis of blepharitis (Yes/No) or eyelid notching (Present/Absent). The predicted
classes for continuous and ordinal outcomes were de�ned based on published thresholds where
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available, 9–14 and on clinical expertise and standard practice where not. Details of all clinical
assessments, symptomatology instruments, and clinician diagnoses are provided in Appendix 1.

Figure 1. Inputs and outputs for the DE-related outcome prediction models. MGD = Meibomian gland
dysfunction; OSDI = Ocular Surface Disease Index; SPEED = Standard Patient Evaluation of Eye Dryness;
CLDEQ-8 = 8-item Contact Lens Dry Eye Questionnaire; VAS = Visual Analog Scale; DEFC = Berkeley Dry
Eye Flow Chart.

To train the prediction models for each DE-related outcome, data were divided into 5 randomly selected
folds, with 4 folds used to train the model and the 5th used for validation. The models were �rst trained
using all available variables as potential predictive features, then the least weighted feature (i.e., the
variable with the lowest coe�cient value) was pruned and the model retrained on the remaining features.
This process was repeated until only a single predictor remained. From that set of trained models, the
one with the highest cross-validation accuracy was selected. To further improve the generalizability of
the modeling results, the entire training-pruning-retraining process was repeated using each of the
original 5 folds as the validation set. The coe�cient values for the 5 best-accuracy models were then
aggregated and ranked to determine the most heavily weighted features used for predicting each DE-
related outcome. This makes it less likely for the model outputs to be entirely dependent on the makeup
of a single validation set. Finally, the class-wise mean values of the predictors strati�ed on outcome
classes were reported, along with the mean cross-validation accuracy. The overall process and an
example of the model output are shown in Fig. 2.

Figure 2. Training process for the DE-related outcome prediction models. FTBUT = Fluorescein Tear
Breakup Time; NITBUT = Non-Invasive Tear Breakup Time; Conj = Conjunctival; MG = Meibomian Glands.

RESULTS

Subjects
This study utilized 726 clinical records from 363 subjects. The mean (SD) age was 26.6 (12.1) yrs with a
range of 18 to 71 yrs. Subjects were 67.2% female, 32.8% male; 46.8% contact lens wearers, 53.2% non-
wearers; 43.8% of Asian race, 56.2% of non-Asian race. The distinction between Asian and non-Asian
races is based on well-established differences in eyelid anatomy,15 tear �lm stability,16 and DE
symptoms.17 The Asian racial group included subjects of Chinese, Japanese, Korean, and Southeast
Asian descent. The non-Asian group consisted primarily of Caucasian subjects, with small minorities of
African, Hispanic, and mixed-race subjects.

Demographic Characteristics
Greater age was a heavily weighted predictor of several clinical signs, including eyelid notching, Line of
Marx (LoM) anterior displacement, and �uorescein tear breakup time (FTBUT; Table 1). The model for
eyelid notching achieved 95.9% prediction accuracy with a 19.6 year greater mean age for subjects with
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notching. The model for anterior displacement of the LoM achieved 86.8% prediction accuracy with a
mean 6.0 year greater age among those with moderate to severe LoM displacement. Among Asian
subjects, greater age was a heavily weighted predictor of FTBUT < 6.7 sec with a model accuracy of
79.7%.

Table 1
Clinical signs predicted by machine learning models that identify lifestyle features as heavily weighted

predictors.
Predicted Outcomes: Clinical Signs  

Predicted Outcome [Predicted
Classes]

Predictive Lifestyle
Features

Class-wise
Means

Accuracy
(%)

 

Eyelid Notching [Absent, Present] Age (yrs) [27.07, 46.73] 95.92  

Eyelid Margin Erythema: UL [< 2,
≥2]

Near Work (hrs/day) [7.25, 8.28] 98.65  

Meibum Quality: UL, Central [< 18,
≥18]

Near Work (hrs/day) [7.24, 8.22] 96.05  

Meibum Quality: LL, Entire [< 36,
≥36]

Alcoholic Beverages
(#/wk)

[1.66, 0.68] 93.99  

LoM: Anterior Displacement, UL
[< 2, ≥2]

Age (yrs) [26.92, 32.88] 86.82  

LoM: Anterior Displacement, LL
[< 2, ≥2]

Airplane Cabin Exposure
(hrs/mo)

[1.28, 0.55] 83.00  

LWE: Length [< 2, ≥2] CL Wear History (yrs) [9.91, 10.17] 92.36  

LWE: Width [< 2, ≥2] Time Exercising (hrs/wk) [4.60, 3.38] 92.86  

Lipid Layer Thickness (nm) [≤ 60,
>60]

CL Wear History (yrs) [10.64, 9.29] 66.87  

Corneal Staining: Extent [< 2, ≥2] Time Outdoors (hrs/day) [2.72, 2.26] 91.24  

Non-invasive TBUT (s): Asian [< 
9.0, ≥9.0]

Near Work (hrs/day) [8.19, 7.05] 80.35  

Fluorescein TBUT (s): Asian [< 
6.7, ≥6.7]

Age (yrs) [26.05, 22.11] 79.74  

CL Wear Duration
(hrs/day)

[10.91, 9.59]  

Fluor TBUT (s): Non-Asian [< 9.2,
≥9.2]

CL Wear Freq (days/wk) [5.78, 5.29] 87.39  

Fluor TBUT (s): All Subjects [< 
10.0, ≥10.0]

CL Wear Freq (days/wk) [6.03, 5.64] 84.55  



Page 7/21

Age was also a heavily weighted predictor of several DE-related symptoms. Ocular dryness severity and
frequency rated on visual analog scales (VAS; Table 2) included age as a heavily weighted predictor.
Subjects with the worst average dryness severity averaged 6.9 yrs older than those with the least severe
dryness. For severity of end-of-day dryness, subjects with the highest severity averaged 6.7 yrs older.
Subject with the most frequent dryness symptoms averaged 8.0 yrs older that those with the least
frequent dryness. Frequency of end-of-day dryness was similar with a 7.0 year greater mean age among
those with the most frequent dryness. Interestingly, age was a heavily weighted predictor for all VAS
ratings of dryness, but not for any VAS ratings of discomfort.
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Table 2
Subjective symptoms predicted by machine learning models that identify lifestyle features as heavily

weighted predictors.
Predicted Outcomes: Symptoms  

Predicted Outcome [Predicted
Classes]

Predictive Lifestyle
Features

Class-wise
Means

Accuracy
(%)

 

OSDI Score [≤ 12, >12 ≤ 23, >23] Car Driving Exposure
(hrs/wk)

[2.07, 5.29,
3.38]

68.09  

CL Wear Comfortable
Wear (hrs/day)

[9.01, 8.19,
7.80]

 

Train Riding Exposure
(hrs/wk)

[1.24, 0.71,
1.99]

 

SPEED II Score [≤ 4, >4] CL Wear Comfortable
Wear (hrs/day)

[9.04, 8.27] 74.47  

CL Wear History (yrs) [9.85, 10.08]  

Alcoholic Beverages
(#/wk)

[0.99, 1.97]  

VAS Comfort [< 75, ≥75 < 83, ≥83] CL Wear Comfortable
Wear (hrs/day)

[7.52, 8.78,
9.31]

65.35  

VAS Discomfort Frequency [< 10,
≥10 < 17, ≥17]

CL Wear Comfortable
Wear (hrs/day)

[9.24, 8.96,
7.89]

60.71  

Airplane Cabin Exposure
(hrs/mo)

[0.81, 1.70,
1.22]

 

Time Exercising (hrs/wk) [4.80, 3.99,
4.13]

 

Alcoholic Beverages
(#/wk)

[0.96, 1.81,
1.97]

 

VAS EOD Comfort [< 59, ≥59 < 76,
≥76]

CL Wear Comfortable
Wear (hrs/day)

[8.02, 8.48,
9.03]

63.26  

Alcoholic Beverages
(#/wk)

[2.01, 2.12,
1.06]

 

Car Driving Exposure
(hrs/wk)

[3.96, 2.65,
2.51]

 

VAS EOD Discomfort Frequency [< 
17, ≥17 < 32, ≥32]

Alcoholic Beverages
(#/wk)

[1.00, 1.98,
2.05]

63.09  

CL Wear Duration
(hrs/day)

[10.39, 10.81,
10.28]

 

VAS Dryness [< 20, ≥20 < 43, ≥43] CL Wear Comfortable
Wear (hrs/day)

[9.18, 8.23,
7.67]

66.13  
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Predicted Outcomes: Symptoms  

Predicted Outcome [Predicted
Classes]

Predictive Lifestyle
Features

Class-wise
Means

Accuracy
(%)

 

Age (yrs) [25.87, 28.01,
32.75]

 

Car Driving Exposure
(hrs/wk)

[2.58, 2.22,
4.60]

 

VAS Dryness Frequency [< 19,
≥19 < 48, ≥48]

CL Wear Comfortable
Wear (hrs/day)

[9.14, 8.25,
7.40]

67.24  

Age (yrs) [26.27, 27.27,
34.27]

 

VAS EOD Dryness [< 31, ≥31 < 61,
≥61]

CL Wear Comfortable
Wear (hrs/day)

[8.98, 7.92,
7.99]

70.29  

Age (yrs) [26.37, 26.90,
33.11]

 

VAS EOD Dryness Frequency [< 32,
≥32 < 65, ≥65]

CL Wear Comfortable
Wear (hrs/day)

[8.82, 8.63,
7.90]

70.18  

Age (yrs) [26.75, 26.50,
33.72]

 

DEFC Any Dryness: CLW [ASYM,
CLIDE, DE]

CL Wear Comfortable
Wear (hrs/day)

[12.92, 8.77,
8.56]

61.11  

Time Exercising (hrs/wk) [4.31, 3.95,
3.74]

 

DEFC Debilitating Dryness: CLW
[ASYM, CLIDE, DE]

CL Wear Comfortable
Wear (hrs/day)

[11.75, 8.13,
7.60]

63.93  

Alcoholic Beverages
(#/wk)

[1.09, 1.61,
2.43]

 

Time Exercising (hrs/wk) [3.88, 3.95,
3.95]

 

DEFC Debil Dryness: Non-CLW
[ASYM, DE]

Car Driving Exposure
(hrs/wk)

[2.26, 5.23] 86.54  

Alcoholic Beverages
(#/wk)

[1.31, 2.27]  

CLDEQ8 Score [< 12, ≥12] CL Wear Comfortable
Wear (hrs/day)

[10.56, 7.89] 76.31  

CL Wear Duration
(hrs/day)

[11.05, 10.69]  

Time Outdoors (hrs/day) [2.66, 2.10]  
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Predicted Outcomes: Symptoms  

Predicted Outcome [Predicted
Classes]

Predictive Lifestyle
Features

Class-wise
Means

Accuracy
(%)

 

Caffeinated Drinks
(#/day)

[0.75, 0.93]  

The prediction model for a diagnosis of blepharitis included age as heavily weighted feature (Table 3),
and achieved 73.7% prediction accuracy. Subjects with blepharitis averaged approximately 5.4 yrs older
than those without blepharitis.

Table 3
Clinician diagnoses predicted by machine learning models that identify lifestyle features as heavily

weighted predictors.
Predicted Outcomes: Diagnoses  

Predicted Outcome [Predicted
Classes]

Predictive Lifestyle
Features

Class-wise
Means

Accuracy
(%)

 

Meibomian Gland Dysfunction
[Yes, No]

CL Wear History (yrs) [9.85, 10.10] 74.38  

Blepharitis [Yes, No] Age (yrs) [30.36, 24.95] 73.67  

Lagophthalmos [Yes, No] Airplane Cabin Exposure
(hrs/mo)

[1.64, 0.90] 80.07  

Sex and race were not heavily weighted features in any prediction models of signs, symptoms, or
diagnoses.

Contact Lens Wear
Contact lens wear (CLW) patterns were heavily weighted in several prediction models. Some measures
of CLW, speci�cally history (yrs) and frequency (days/wk), although heavily weighted in some models,
revealed only minimal differences between subjects with and without signs or symptoms (e.g., a mean
of 0.25 yrs longer CLW among those with MGD).

Longer CLW duration (hrs/day) was a heavily weighted predictor of FTBUT among Asian subjects (79.7%
accuracy) with approximately 1.3 hrs/day longer wear for subjects with shorter FTBUT. Although the
difference appears minimal, it should kept in mind that it is equivalent to 9.1 hrs/wk less CLW among
those with better tear �lm stability. CLW duration was not a heavily weighted feature in any symptom or
diagnosis predictions.

In contrast, the duration of comfortable CLW (hrs/day) was an important predictor for every subjective
measure of symptoms studied. For Ocular Surface Disease Index (OSDI) score, comfortable CLW



Page 11/21

averaged 1.2 hrs/day longer among those with the mildest symptoms. Longer comfortable wearing time
was predictive of lower VAS ratings of ocular discomfort and dryness severity and frequency, both
overall and at end-of-day. Subjects who were classi�ed as asymptomatic for DE with the Berkeley Dry Eye
Flow Chart (DEFC) averaged 12.9 comfortable hrs/day of lens wear, contact lens-induced DE subjects
averaged 8.8 hrs/day, and subjects with physiological DE averaged 8.6 hrs/day. Comfortable CLW
duration was also a heavily weighted predictor of DEFC debilitating symptoms in the highest accuracy
model of any symptom assessment (86.5%). Asymptomatic subjects averaged 11.8 hrs/day of
comfortable lens wear, subjects with debilitating contact lens-induced DE averaged 8.1 hrs/day, and
subjects with debilitating physiological DE averaged 7.6 hrs/day. Finally, Contact Lens Dry Eye
Questionnaire (CLDEQ-8) score was predicted with 76.3% accuracy with a comfortable contact lens
wearing time of 2.7 hrs/day longer among subjects with no or mild symptoms.

Detrimental Lifestyle Behaviors
There are a number of lifestyle behaviors that are known or generally considered to have positive or
negative effects on health that may also have effects on the ocular surface and/or subjective symptoms.
A greater amount of near work (hrs/day) was found to be a heavily weighted predictor of eyelid margin
erythema in a model achieving 98.7% prediction accuracy. Among Asian subjects, those with non-
invasive tear breakup time (NITBUT) < 9.0 sec averaged 8.2 hours of near work per day and those with
breakup times ≥ 9.0 sec averaged 7.1 hours (80.4% accuracy).

Consuming alcoholic beverages was a heavily weighted predictor of meibum quality, averaging 1.0
drinks more per week among those with poor meibum quality (94.0% accuracy). Alcoholic beverage
consumption was a heavily weighted feature in several symptom prediction models. Subjects with high
Standard Patient Evaluation of Eye Dryness (SPEED II) scores (worse symptoms) averaged 1.0 drinks per
week more than those with mild or no symptoms (74.5% accuracy). The number of alcoholic drinks per
week was also a heavily weighted predictor of VAS ratings of ocular discomfort frequency, end-of-day
discomfort, and frequency of end-of-day discomfort. In each of those models, subjects with severe and
frequent symptoms consumed approximately 1.0 drinks per week more on average. The model of DEFC
debilitating symptoms among contact lens wearers showed that asymptomatic lens wearers averaged
1.1 alcoholic drinks per week, those with contact lens-induced DE 1.6 drinks per week, and those with
physiological DE 2.4 drinks per week.

Bene�cial Lifestyle Behaviors
Time exercising (hrs/wk) was a heavily weighted predictor of lid wiper epitheliopathy (LWE; 92.9%
accuracy), averaging 1.2 hrs/wk more exercise among subjects with no or mild LWE. In terms of
symptoms, subjects with the most frequent VAS discomfort exercised approximately 0.7 hrs/wk less,
and subjects classi�ed as symptomatic by the DEFC exercised approximately 0.6 hrs/wk less.

Less time spent outdoors (hrs/day) was a heavily weighted predictor of corneal staining extent (91.2%
accuracy), and of CLDEQ-8 score (76.3% accuracy). Subjects with moderate to severe corneal staining
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extent averaged 0.5 fewer hours per day outdoors. Contact lens wearers with high CLDEQ-8 scores
(worse symptoms) spent approximately 0.6 fewer hours per day outdoors.

Environmental Exposures
More exposure to airplane cabin environments (hrs/mo) was a heavily weighted predictor for anterior
displacement of the LoM (83.0% accuracy) and a diagnosis of lagophthalmos (80.1% accuracy). More
airplane cabin exposure was also a heavily weighted predictor of more frequent ocular discomfort in VAS
ratings. The mean differences in airplane cabin exposure between those with and without signs or
symptoms were minimal at approximately 0.7 hrs/mo in all models.

More time riding the train (hrs/wk) was predictive of a higher OSDI score, and subjects with the highest
OSDI scores (worse symptoms) were exposed to riding the train approximately 0.8 hrs/wk more than
those with the lowest OSDI scores. Driving a car (hrs/wk) was predictive of several assessments of
subjective symptoms. Subjects with the highest OSDI scores averaged approximately 1.3 hrs/wk more
driving time. For VAS severity of end-of-day ocular discomfort, subjects with the lowest comfort ratings
drove a car on average 1.5 hrs/wk more. Subjects with the highest VAS dryness severity ratings averaged
approximately 2.0 hrs/wk more driving time. Among non-contact lens wearers, subjects symptomatic for
debilitating DE by DEFC classi�cation averaged approximately 3 hrs/wk more exposure to driving a car
than did asymptomatic subjects (86.5% accuracy).

DISCUSSION
In this study, machine learning models were trained to take subject characteristics, lifestyle behaviors
and risk exposures, clinical assessments of the ocular surface, tear �lm and eyelids, and symptom
scores from validated DE instruments, and combine them in prediction models of DE-related outcomes.
Lifestyle factors were found to be among the most heavily weighted features used by the models to
predict a number of clinical signs, subjective symptoms, and diagnoses related ocular surface disease.
Prediction accuracies for DE-related symptoms ranged from 60.7–86.5%, for diagnoses from 73.7–
80.1%, and for clinical signs from 66.9–98.7%.

Greater age was a heavily weighted predictor for clinical signs including the presence of eyelid notching,
anterior displacement of the LoM, and shorter FTBUT among Asian subjects. Greater age was also a
heavily weighted predictor for VAS dryness severity and frequency ratings, both throughout the day and
at end-of-day, as well as for a clinical diagnosis of blepharitis. There is evidence to suggest that the LoM
can shift due to aging, and due to the presence of DE.14,18 Eyelid margin irregularities such as notching

are frequently observed in cases of blepharitis and MGD,19,20 both conditions known to be related to
aging.21–24 It has been well documented that symptoms of DE and MGD are on average more severe,
frequent, and prevalent among older populations.22,25–27
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More years of CLW was a heavily weighted predictor in models of LWE, a thinner lipid layer, a higher
SPEED II score, and a diagnosis of MGD, all of which are in agreement with the literature.28–32 In general,
however, the interclass differences in these models were very small (0.2–1.4 yrs of CLW). Similarly, CLW
frequency (days/wk) was a heavily weighted predictor of unstable vs. stable FTBUT33 but with small
interclass differences (0.4–0.5 days/wk). These results illustrate how very small differences that are not
considered to be of importance to clinicians can still be heavily weighted features in machine learning
predictions.7

Duration of CLW (hrs/day) was a heavily weighted feature in predicting FTBUT among Asian subjects. In
contrast, while the duration of comfortable CLW (hrs/day) was not a heavily weighted predictor for any
clinical signs, it was an important predictor for every subjective measure of symptoms studied.34

Asymptomatic subjects averaged 0.8–4.4 more hrs/day of comfortable CLW. Total hrs/day of CLW is not
always informative because corneal desensitization, wearer commitment, lifestyle needs, and individual
pain sensitivity level can result in continuing wear far beyond the onset of symptoms. Hrs/day of
comfortable CLW was a far better predictor of symptoms. Clinicians should ask symptomatic contact
lens patients about their comfortable wearing time and distinguish it from their total wearing time.35

It is important to point out that with these machine learning prediction models the direction of causality
is generally unknown, but sometimes can be inferred logically. For example, there was longer CLW
duration (hrs/day) among Asian subjects with shorter FTBUT. Other than by chance (e.g., some unknown
sampling bias), there is no reason to think that better tear �lm stability would cause contact lens wearers
to wear their lenses less. The fact that those with shorter FTBUT were actually wearing their lenses
longer implies that the direction of causation is from longer CLW to shorter FTBUT and not the reverse.

Amount of near work (hrs/day) was a heavily weighted predictor of eyelid margin erythema among all
subjects and shorter NITBUT among Asian subjects. Subjects with erythema or reduced tear �lm
stability averaged slightly over an hour per day more near work. Frequent near work is a well-known risk
factor for DE, particularly in the context of digital display use.36–38 While there is little information on the
effects of near work on the eyelids, Wu et al. found that an eyelid margin abnormality score was
positively correlated with time using a visual display terminal, and that FTBUT, corneal staining, and OSDI
score were all signi�cantly worse in a cohort using visual display terminals for more than 4 hours per
day.39 Most studies of near work and tear �lm stability have employed FTBUT as the outcome measure.
Khezrzade et al., however, did �nd that NITBUT was signi�cantly reduced after 30 minutes of reading.40

To our knowledge, the machine learning results presented here represent the only other evidence of the
effects of sustained near work on non-invasive measurements of tear �lm stability, and that sustained
near work may ultimately have effects on the eyelid margin.

Consuming caffeinated beverages was a heavily weighted predictor only for CLDEQ-8 score, and only
with an average of 0.2 drinks per day more among those with a higher score. Caffeinated beverage
consumption was not predictive of any other signs, symptoms, or diagnoses. Most studies have found
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either no relationship between caffeine consumption and DE,41 or a possible protective effect.1,42,43

Consumption of alcohol on the other hand was a heavily weighted predictor of poor meibum quality and
of worse DE symptoms on several questionnaire instruments. Subjects with poor meibum quality
averaged 1.0 drink more per week, and symptomatic subjects averaged 1.0-1.3 drinks more per week.
Although the effect size appears to be small, it should be kept in mind that it is equivalent to 52–68
drinks more over the course of a year. The literature on the effects of alcohol on the signs and symptoms
of DE is largely equivocal.1 Some studies have found alcohol consumption to be linked to tear �lm

deterioration, reduced tear volume, increased osmolarity, and worse DE symptoms.43,44 Other studies
have found alcohol to be a non-factor in DE, 42,45,46 and a few studies have reported a protective effect
against DE.41,47 To our knowledge this is the �rst study to link alcohol consumption to lower quality
meibum. Magno, et al. found that alcohol consumption signi�cantly increased the risk of DE in women
but not in men, possibly due to differences the hormone androgen, the de�ciency of which has been
linked to MGD.44 In men, it has been shown that excessive or chronic alcohol consumption can reduce
serum testosterone.48 Modeling the interaction of alcohol consumption and sex was not performed in
this study and may deserve further investigation.

More time exercising was found to be a heavily weighted predictor of less LWE. LWE is associated with
sub-clinical in�ammation,49 and exercise has been linked to reduced tear concentrations of several

cytokines and other markers of in�ammation or oxidative stress.50–52 Aerobic exercise has been shown
to promote tear secretion and improves tear �lm stability in dry eye patients,50,53 and tear �lm instability
has been linked to LWE.28 Other studies have also demonstrated a link between a lack of exercise (i.e.,
sedentary lifestyle) and risk of DE. Sedentary behavior has been associated with reduced tear breakup
time, lower tear volume, and risk of DE.50–53 It has been speculated that exercise increases
parasympathetic stimulation of the lacrimal gland and acinar blood vessels, increasing secretion of
electrolytes and aqueous.1

Approximately 2.5 hours more per week spent outdoors was found to be a heavily weighted predictor of
lesser corneal staining extent, and of lower CLDEQ-8 score among contact lens wearers. Some studies
have found time outdoors to be a risk factor for DE,46,54 often related to extreme heat or cold

conditions38 or excessive wind.55 Other studies have found time spent outdoors to be a non-factor in risk
for DE.45 Rodriguez, et al. found that time spent on indoor work was associated with a decreased blink
rate,56 which is well known to be an etiological factor in DE. In this study, a post-hoc analysis showed
that our subjects who spent more time outdoors were also doing less near work on average (thus
presumably blinking more), and exercising signi�cantly more.

More time riding the train was a heavily weighted predictor of higher OSDI score. More time driving a car
was a heavily weighted predictor of higher symptom scores including OSDI score, VAS ratings, and DEFC
classi�cation. Symptomatic subjects averaged 0.8-3.0 more hours per week exposure. There are likely
similarities and differences in the mechanisms of DE symptoms in these two types of exposure. While
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there are studies on how DE affects the ability to drive,26 there are relatively few studies of car driving or
train riding as a causative or risk factor for DE. Guillon, et al. found a greater incidence of symptoms
among DE subjects after riding the subway and after driving a car for both contact lens wearers and non-
wearers.57 Rodriguez, et al. found increased levels of ocular discomfort and a reduced interblink period

associated with driving a car.56 The link between DE and these exposures could be due to the inside
environment (e.g., windows open or closed; heater or air conditioner settings; fan settings; environmental
contaminants or cleaning product irritants), which could apply to both cars and trains. It could also be
due to extended visual tasking while driving for extended periods which reduces the interblink period,56

while extended visual tasking at distance would likely not apply to riding the train.

The limitations of this study include employing univariate logistic regression in the machine learning
prediction models. More sophisticated statistical models and larger datasets for some sparse variables
are likely to improve prediction accuracy further, especially for symptoms. There are numerous other
likely important lifestyle behaviors and exposures that were not addressed in this study, including
obesity, dietary habits, health and wellness supplements, sleep patterns, and a wide variety of ocular and
systemic medications, to name a few. Future work would also bene�t from modeling interactions among
demographic and risk factors to determine if predictive relationships are the same for different ages,
sexes, and races.

CONCLUSIONS
In this study a novel machine learning approach was employed to predict DE-related outcomes using
combined clinical, symptom, and lifestyle data. The algorithm relied heavily on a number of subject
characteristic, lifestyle behavior, and environmental exposure variables to make the highest accuracy
predictions. Age was a heavily weighted feature in predictions of eyelid notching, LoM anterior
displacement, and FTBUT, as well as VAS symptom ratings and a clinician diagnosis of blepharitis.
Contact lens wear patterns were heavily weighted features in predictions of FTBUT and subjective
ratings of DE symptoms. Some generally bene�cial or detrimental behaviors were shown to also be
important predictors of ocular signs and symptoms, including time spent in near work, alcohol
consumption, exercise, and time spent outdoors. Exposure to riding the train and driving a car were
predictors of DE-related symptoms but not clinical signs. These results illustrate the importance of
lifestyle, subject, and environmental characteristics in ocular surface health and disease, and underscore
the emerging consensus that the impact of these factors in clinical care and clinical research must be
taken into account with greater rigor than has largely been the case to date.
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Figure 1

Inputs and outputs for the DE-related outcome prediction models. MGD = Meibomian gland dysfunction;
OSDI = Ocular Surface Disease Index; SPEED = Standard Patient Evaluation of Eye Dryness; CLDEQ-8 = 8-
item Contact Lens Dry Eye Questionnaire; VAS = Visual Analog Scale; DEFC = Berkeley Dry Eye Flow
Chart.
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Figure 2

Training process for the DE-related outcome prediction models. FTBUT = Fluorescein Tear Breakup Time;
NITBUT = Non-Invasive Tear Breakup Time; Conj = Conjunctival; MG = Meibomian Glands.
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