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Abstract

Functional ultrasound (fUS) is an emerging technique for non-invasive neuroimaging that infers neural
activity by detecting changes in blood volume. fUS has found its applications in neuroscience studies
with freely moving animals and brain-computer interfaces (BCIs) as it offers minimally invasive high
spatiotemporal resolution and is a low-cost and portable technology compared to prior neurorecording
techniques such as electrophysiology and functional magnetic resonance imaging (fMRI). However, the
current classical fUS methods require a relatively large number of compounded images to successfully
remove tissue clutter. This property has not only caused computational, memory, and communication
complexity for fUS hardware technologies but also has resulted in an undesirable wait period to construct
one brain image. The latter, particularly, has negatively impacted the use of fUS for real-time BCIs.
Therefore we propose accelerated fUS through a deep learning technique called the neural operator for
functional ultrasound (NO-fUS). NO-fUS tackles the technical challenges: it reduces the wait period of
frame collections by 90% and the sampling rate at inference time by 50%. This extensive reduction on
the number of input frames is a step toward more efficient fUS technology such as for 3D volumetric
imaging fUS technology, reducing number of ultrasound pulses needed to image and, in turn, reduce
potential probe heating and computational cost. Unlike conventional, data-driven deep neural architecture,
NO-fUS is generalizable across experiment sessions and animals; we highlight this generalization in mouse,
monkey, and human data. Finally, we demonstrate the BCI applications of NO-fUS in behavioral decoding.
Specifically, our results suggest that NO-fUS not only offers high-quality images, but also preserves
behavior-related information required to decode the subject’s thoughts and planning.

1 Introduction

The advent of novel neurotechnologies provides scientists the opportunity to explore the brain at resolutions
not seen before, which can guide future clinical discoveries and interventions for neurological diseases.
Electrophysiological recording technology such as Utah arrays provide direct electrical recordings of single
neuron level activity and have been used for brain computer interfaces (BCIs) [1, 2] and other applications.
However, these techniques require highly invasive surgery, have a small field of recording, and are prone to
probe degradation [3, 4, 5]. Other techniques such as fMRI and EEG are minimally invasive and have long
been used both clinically and in research to provide a large field of view of brain activity. Even so, these
techniques are constrained by their limited spatial and temporal resolution.

Functional ultrasound (fUS) [6, 7] is an up-and-coming neuroimaging technique that is able to image
from outside of the dura with a high sensitivity, high spatial resolution, and large field of view, bridging
the gaps between prior neurorecording techniques. Similar to fMRI, fUS leverages neurovascular coupling
to infer population level neural activity from changes in cerebral blood volume (CBV) for neuroimaging.
However, in contrast, fUS is relatively low cost and portable given the small size of current transducers and



probes, allowing for frequent bedside use. Additionally, fUS is not constrained by machinery and thus can be
simultaneously used on freely moving subjects.

These advantages make fUS an optimal tool for minimally invasively examining brain activity both in
the clinic and during neuroscience studies. Clinically, fUS has already been used to map brain activity
and vasculature intraoperatively in humans for tumor removal [8] and monitor functional connectivity and
epileptic activity in human neonates at bedside [9, 10]. Several prior studies have used fUS to record neural
activity in behavioral tasks in freely moving rodents [11], non-human primates [12, 13|, and humans [14].
Moreover, fUS has been increasingly used for brain computer interfaces (BCIs), a technology that decodes and
converts brain signals into computer commands [12, 15, 13|, and has the potential to power next-generation
minimally invasive alternatives for BClIs.

However, fUS’ potential is restricted by hardware and computational demands. To produce a single, final
fUS image or “power Doppler” (DOP) image, hundreds of ultra-fast ultrasound pulses sent out as plane
waves are transmitted and received, capturing backscattered signal from red blood cells and providing fast
and precise measurements of changes in CBV. Data from these plane wave emissions are reconstructed or
“beamformed” and coherently compounded to produce an intermediate “in phase and quadrature” image
frame (IQ frame). One DOP image is finally then composed of the squared average of hundreds of IQ frames.
Singular value decomposition (SVD) can then be used to filter out tissue motion signals from blood volume
information [16, 17, 18, 19].

These processes require a large amount of data storage, can lead to dangerous heating of the ultrasound
probe, and can cause slow wait times during Doppler image generation, limiting the capabilities and
applications of fUS. Furthermore, there are currently two primary computational obstacles that constrain fUS
neuroimaging and processing: a) fUS faces computational complexity and memory storage challenges due to
the number of compounded plane wave images that must first be acquired and beamformed per DOP and b)
SVD, used for tissue motion filtering, involves slow computations, struggling to scale for large datasets and
requires domain experts to tune the filtering parameters.

To address the first challenge of computational and memory complexity, deep-learning-based approaches
such as DeepfUS [20] have been proposed to achieve reasonable Doppler imaging. However, this approach
reduces the spatial resolution, discards the imaginary component of the complex in-phase and quadrature
(IQ) signal input, and ignores the inherent temporal continuity of fUS. Thus, DeepfUS is unable to operate on
data of different dimensions across the time domain. The second challenge is partially addressed by general
deep learning-based methods with their scalability using graphical processing unit (GPU) infrastructures and
by pushing the domain knowledge to the training stage for the preparation of example pairs.

We propose a solution to these gaps. Neural Operator for Functional Ultrasound (NO-fUS) is a deep-
learning-based framework that accelerates fUS acquisition using a limited number of time frames, thereby
alleviating the computational, memory, and communication complexity of fUS technology and reducing the
latency for fUS-based BCIs. NO-fUS uses a concept from neural operator learning, which learns mappings
between two infinite-dimensional functions [21, 22, 23|. Neural Operators (NOs) are widely used for finding
solutions to partial differential equations (PDEs) and have applications in many scientific and engineering
disciplines [24], such as computational fluid dynamics [25], weather forecasting [26], seismology [27], and
lithography modeling [28]. A notable property of neural operators is their parameterization, which allows
for different discretizations. NO-fUS leverages this fundamental property to enable changes in hardware
sampling rates in time or to accelerate temporal acquisition during inference without impacting imaging
quality beyond a lower bound. NO-fUS is the first neural operator-empowered method for fUS. Unlike existing
deep-learning-based fUS methods, NO-fUS utilizes the complex nature of input IQ signals and respects the
inherent temporal attributes of image frames; the latter is particularly crucial for learning generalizable
temporal filtering.

We apply NO-fUS to brain images collected from of mouse, monkey, and human and demonstrate NO-fUS
state-of-the-art performance in achieving high-quality reconstructions of fUS data using less temporal data.
While NO-fUS is trained on image frames from mice, we showcase its superior practical generalization to
unseen experiment sessions and not only in new animals but also across species. Additionally, we show that
NO-fUS preserves the features necessary for behavioral decoding in monkeys and humans while reducing the
collection wait time-i.e., the Doppler sampling rate is reduced by 90%, improving NO-fUS-powered BCls.
Finally, we show that NO-fUS can run on both a CPU and GPU. It can be trained on a single GPU with less
than 24 GB of memory in a short amount of time, and its inference is highly parallelizable on a GPU.



Overall, NO-fUS offers the following in a single package: a) a pipeline for training NO-fUS on experimental
datasets, b) a fast procedure for fine-tuning NO-fUS on a single session for better precision, c¢) an inference
framework for accelerated and efficient imaging in an online setting, d) a low-latency imaging tool that
preserves decoding information needed for BCI-based decoding in monkeys and human and e) low-complexity
pre-processing that improves the robustness of behavioral decoding within a BCI framework.

2 Results

Deep neural operator framework for accelerated fUS. NO-fUS (fig. 1) is a deep learning framework
that offers accelerated fUS imaging from limited time frames, increasing the DOP sampling rate and hardware
efficiency. Current classical methods require a high number of frames (e.g., 250 or 300) to achieve high-quality
fUS imaging. NO-fUS maintains this performance using only 10 — 15% of the number of frames (e.g., 32
frames). NO-fUS is GPU enabled, and its imaging process can be parallelized over multiple imaging examples.

NO-fUS consists of three phases: training, fine-tuning, and inference. During the training stage (fig. 1a),
NO-fUS is trained on data from multiple mice recording sessions; this step leverages techniques from deep
learning, such as data augmentation, for improved performance. We offer our trained model as a foundation
model that can be used for imaging new sessions and new animals, with the option of a simple fine-tuning
stage. NO-fUS can be fine-tuned (fig. 1b) using only a small amount of input data captured over a few
minutes at the beginning of an hours-long experiment session. This fine-tuning stage is optional and is meant
to further improve performance; we, indeed, skip this step in some of our experiments and show that NO-fUS
generalizes to a new session of the same animal without a need for fine-tuning. Finally, during the inference
stage, NO-fUS constructs a fUS image from limited IQ time frames in a fraction of a second.

NO-fUS combines techniques from deep learning and operator learning (fig. 1c). It consists of a U-shaped
architecture [29, 30] that performs decomposed spatial and temporal filtering on the beamformed complex
in-phase/quadrature (IQ) input signal. NO-fUS learns spatial and temporal correlations of IQ frames, which
are central to principled optimization-based fUS frameworks; such tissue motion and blood flow statistics
are often overlooked in data-driven deep learning approaches. NO-fUS achieves spatial filtering through
convolutional blocks in the model, while temporal filtering is performed globally via the Fourier neural operator
(FNO) [22], making the model discretization agnostic. Three distinct characteristics make NO-fUS highly
generalizable in practice. First, unlike prior neural networks [20], NO-fUS respects the complex nature of the
1Q input signal. Second, NO-fUS learns global frequency-based features crucial for filtering the temporally
slow-moving tissue components from the blood volume flow. We later show that this operator-based temporal
learning enables NO-fUS to be used at a sampling rate different from the trained frame rate. This allows
NO-fUS to acquire I1Q frames at a lower sampling rate, increasing the memory and communication efficiency
of the fUS hardware technology. Third, NO-fUS guides the data-driven computations using an approximate
DOP image, constructed from the limited acquired frames using SVD-based filtering [19]. This guidance
is inspired by the observation that SVD on limited frames offers high structural similarity relative to the
ground-truth image; hence, the approximated image can guide NO-fUS with an inferred spatial location of
blood flow. We refer to our method without this guidance as NO-£US, while in the presence of SVD guidance,
we call our method NO-fUS-G.

We use the DOP images that have been processed by SVD, the most common tissue decluttering method
in practice, as the ground truth. Given the paper’s focus on reducing the number of 1Q frames used during
data acquisition, we define the ground-truth image as the one captured by SVD using the full set of T
frames, where SVD filters out tissue clutter across all time frames, and the power is averaged over the
entire set of T' frames (i.e., DOPsy11+SVDgy11). This SVD filtering approach is the gold standard for fUS
in neuroscience studies, so the ultimate goal is to achieve an image as close to this ground-truth while
utilizing a lower number of IQ frames. The central frequency of fUS used during imaging varied depending
on the species imaged and, in turn, the total set of T frames. To provide a comparison of what fUS image
quality would look like using the K limited number of frames used by NO-fUS, we use an upper bound,
DOP1 iy +SVDsy11, and a lower bound, DOPy;,+SVD1i,. We define DOPy3,+SVDsy11, as the DOP image generated
by averaging over only the limited observed K frames. Instead of using the K frames for SVD, we look into
the “future” by using all T" frames for SVD to remove the tissue motion clutter, providing improved tissue
decluttering. This DOPy;,+SVDsg,11 serves as an upper bound on performance. We use both the ground truth
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Figure 1: Neural Operator for Functional Ultrasound (NO-fUS) Imaging Pipeline. a, Training
pipeline. The pipeline takes several frames of beamformed IQ complex signals as input. The input passes
through an augmentation step (e.g., rotation, flipping) and a standardization step. The model outputs a
DOP image, which is the average power of the filtered and decluttered IQ frames. Finally, a loss is computed
based on the similarity between the model output and the desired DOP image; this loss is used via autograd
and backpropagation to update the trainable parameters. b, Fine-tuning procedure and inference procedure.
This module fine-tunes NO-fUS on a new session or animal. It takes a handful of IQ frames from the
beginning of the session and fine-tunes the model by following the training pipeline within a short period of
time. The inference stage offers efficient low-latency real-time fUS imaging using the trained or fine-tuned
NO-fUS. For example, at a sampling rate of 500 Hz using 32 IQ frames at a time, NO-fUS can generate
one DOP image every 64 ms, excluding processing latency. Notably, this is approximately 6 — 9 times
faster than the traditional SVD-based method, which uses 250 — 300 input IQ frames. ¢, GPU-accelerated
NO-fUS architecture. NO-fUS, a deep learning framework, consists of neural blocks that perform decomposed
convolutional spatial filtering combined with frequency-based temporal operator mapping. NO-fUS takes a
3D input (time frames x image height x image width) of beamformed IQ signals. When guided by SVD, i.e.,
NO-fUS-G, it also takes an approximate DOP (image height x image width), which is computed using SVD
on a limited number of time frames. The data dimensions remain the same across the time dimension as they
are processed via the temporal neural operator. In contrast, the spatial dimensions decrease and increase via
a U-Net architecture. The final layer takes the frame’s average to output a single image of dimension (image
height x image width) representing the DOP image (see Supplementary material for detailed architecture
design). d, NO block. It performs decomposed spatiotemporal filtering; a neural network parameterizes
the spatial filtering, and the temporal filtering is achieved through functional mapping with Fourier neural
operators. See Supplementary material for a more detailed architecture.

and DOP1i,+SVDsy11 to evaluate the performance of NO-fUS which constructs the DOP image from only
K <« T frames. We note that DOPy;,+SVDs,11 is not a practical method which uses the “future frames” for
decluttering and it is only being used in our analysis to provide an upper bound in regard to the ground-truth.
Finally, we compare NO-fUS to DOPy;,+SVD1;, that removes tissue clutter using only the K frames, which
are then power-averaged to construct the DOP image. DOP;;,+SVD;;, is a more realistic representation of
how DOP images would appear if using reduced K frames.

NO-fUS is the state-of-the-art accelerated fUS that runs at a faster frame rate during
inference. Using the training pipeline, we trained NO-fUS on a fUS imaging dataset from five mouse brains,
where the target image to construct was the DOP image provided by SVD-based fUS at the original frame



rate (see Supplementary Material for more details). In the remainder of the manuscript, we refer to this
dataset as MultiMice.
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Figure 2: Outperformance generalization of NO-fUS on unseen frames from trained (MultiMice)
and new mouse (Mouse X). a, Qualitative analysis of NO-fUS and the baselines on the test set (unseen
frames) from the MultiMice dataset. The best-case and worst-case performance within MultiMice are shown
in each row. From left to right, columns represent: Ground-truth DOP (computed by performing SVD-based
de-cluttering and power averaging using the full 300 frames), DOPyi,+SVDsy11, DOP1in+SVD1iy [16, 17, 19],
DnCNN |[31], DeepFUS [20], DeepFUS, .., NO-fUS, and NO-fUS-G. b, Quantitative comparison of the proposed
method (NO-£US, and NO-fUS-G) with baselines in terms of NMSE, PSNR, and SSIM on the test set, MultiMice.
¢, Qualitative analysis of the performance on a Mouse X for activity during visual stimulus presentation and
the worst case performance. d, Quantitative comparison of the proposed method (NO-£fUS, and NO-£fUS-G)
with baselines on Mouse X to highlight generalization to unseen brains. e, Qualitative analysis of DeepFUS,
DeepFUS, NO-£fUS, and NO-fUS-G on MultiMice when the inference frame rate is x0.5 of the trained IQ frame
rate. The visualization shows the generalization capability of NO-fUS against DeepFUS. f, Performance
of the methods on MultiMice at full (1.0x) and half (0.5x) inference frame rates (NMSE and PSNR are
shown; see Supplementary Materials for SSIM). g, The runtime of methods, divided into collection-wait time
(cwt) and process-wait-time (pwt); cwt includes the transmission and receiving of the ultrasound pulses, the
beamforming process, and the storage time along with a buffer for safety.

Baselines. The ground-truth images are constructed using 7' = 300 IQ frames, while NO-fUS uses only
K = 32 1Q frames (See Supplementary Material for K = 16 or 64, and the Monkey experiments where
T = 250). In addition to DOP;;,+SVDys,, we compared NO-fUS with data-driven deep learning-based methods
(fig. 2). They all were trained similarly to NO-fUS for a fair comparison, thus any differences in performance



highlight the architectural advantages of NO-fUS. We report performance based on normalized mean square
error (NMSE, |), peak signal to noise ratio (PSNR, 71), and structural similarity index measure (SSIM, 7).
NMSE and SSIM range between 0 to 1. Using the MultiMice test set, we compare NO-fUS to a variety of
models and demonstrate the superiority of NO-fUS (fig. 2a,b).

Importance of temporal filtering. First, we show that a decrease in the number of IQ frames increases the
difficulty of differentiating between tissue clutter and blood flow, resulting in poor DOP1;,+SVD1;, performance.
NO-£fUS is trained to learn the temporal correlations from limited IQ frames, hence, it improves upon
DOP; i, +SVDyi, and shows a close performance to DOPys,+SVDsy11- Second, a data-driven filtering approach
should be based on the inherent difference between the desired blood flow signal and the undesired signal of
tissue clutter. Otherwise, they fail to generalize. To demonstrate this, we compare NO-fUS to DnCNN [31] and
DeepFUS-base [20]. DnCNN is a convolutional neural network that operates on the real component of the IQ
time frames and has been previously used in the literature for general image denoising [31]. DeepFUS-base
is the basic version of DeepFUS, specifically designed for fUS, but it does not include 3D convolution over
time and space to mix time frames at the beginning of the network architecture [20]. NO-£US outperforms
DnCNN and DeepFUS-base (fig. 2b). We attribute the inability of DnCNN and DeepFUS-base to perform on
multiple brains to the lack of temporal processing of the IQ time frames in their neural architectures. For
instance, we observe that while DnCNN and DeepFUS-base perform well on data from one mouse within the
MultiMice training set, they fail on another (fig. 2a). Finally, we note that we also attempted to apply a
Robust PCA optimization-based approach for fUS [32], as suggested in [33]. However, despite varying the
hyperparameters, the method—taking several minutes per image—failed to perform well. We attribute this
to using the limited number of frames, K = 32, as opposed to the full number of 7' = 300 frames.

Comparison to the best available method. Next, we compare NO-fUS to DeepFUS [20], the current best
published deep learning method available for reconstructing fUS data from sparse data (fig. 2a,b). DeepFUS
is a deep learning framework that operates only on the real component of the IQ time frames, treats the time
frames as channels, and ignores the temporal aspect of the data. DeepFUS, an extension of DeepFUS-base,
includes only one 3D convolutional block at the beginning of its architecture to combine the time frames
temporally before the deep processing layers. Our results show that NO-£fUS has better performance than
DeepFUS. The improved performance metrics of NO-fUS compared to DeepFUS highlight the importance of
two features present in NO-£fUS but lacking in DeepFUS: processing the complex 1Q frames rather than only
the real portion and incorporating a series of temporal processing layers in addition to spatial filtering in the
deep layers.

Lastly, we show that the generalization of NO-fUS can further improve by adding SVD Guidance (see
fig. 1d and Methods section); in this setting, NO-fUS-G outperforms NO-fUS on the MultiMice test set,
achieving state-of-the-art (SOTA) results. Overall, fig. 2a visualizes image examples from each of the mice.
Another notable advantage of NO-fUS-G is that it captures detailed spatial segments which may be entirely
neglected by fully data-driven methods, such as DeepFUS and NO-£fUS.

Generalization on 0.5x IQ frame rate. An important property of NO-fUS, compared to DeepFUS, is
that NO-fUS uses neural operators to learn global temporal processing instead of localized temporal filtering.
This allows NO-fUS and NO-fUS-G to run at 0.5x the IQ frame rate, skipping every alternate frame without
performance decline. In contrast, testing on MultiMice testset, DeepFUS’s performance deteriorates when
IQ time frames are acquired at half the frequency compared to the trained frame rate (fig. 2e,f). The slight
performance decline in NO-fUS-G is due to the fact that the framework relies on a guided SVD, which is
computed from a limited half frame rate IQ signal and thus has lower structural similarity to the ground
truth. Overall, the ability of NO-fUS to run at 0.5x the original fUS frame rate during inference is a crucial
capability, as it reduces the computational, memory, and communication cost of data acquisition by an
additional 50%.

Runtime. Finally, we compare the runtime of NO-fUS with other frameworks (fig. 2g). We divide the
runtime into two components: one is the time taken to collect all frames, i.e., collection-wait-time (cwt),
which includes frame acquisition, beamforming processing time, and data storage, and another is the time
taken to process the IQ input signal into a Doppler image , i.e., processing-wait-time (pwt), which includes
cohesive compounding of frames and SVD. To acquire the ground truth image, cwt is 2.2 seconds (equivalent
to collecting and storing 7" = 300 frames at 500 Hz IQ sampling rate) and pwt is 0.0949 seconds. The
proposed pipeline enables the approximately linear reduction of the cwt by ~ 90% (equivalent to collecting
K = 32 frames at 500 Hz IQ sampling rate); hence, the cwt of all the discussed deep learning-based methods




are 32/300 x 2.2 = 0.23 s.

We observe that DOPy;,+SVDy i, using K limited IQ frames has lower pwt (0.0055 s) than NO-£US (0.0225 s)
and NO-£fUS-G (0.0230 s); however, we note that NO-£fUS and NO-fUS-G have better image quality metrics than
when using SVD. The pwt of other deep learning frameworks are DnCNN (0.0026 s), DeepFUS-base (0.0031 s),
and DeepFUS (0.0031 s). Although NO-fUS pwt is a bit longer than the other deep learning frameworks due
to its delicate design of temporal filtering using Fourier neural operators (FNO)s [22, 23], NO-£US has the
best imaging quality among all, and it is still much faster than full-frame 7" SVD with a pwt of 0.0949 s.

We emphasize that the cwt is the runtime bottleneck compared to the pwt. This brings the total effective
runtime of NO-fUS to 0.2525 s and NO-fUS-G to 0.2530 s. These runtimes are on the same order as other
deep learning frameworks and are faster compared to the ground-truth method, DOPsy11+SVDgy11, (2.2949
s) run at full collection wait time with SVD processing. Overall, the significant reduction of cwt (= 90%)
and pwt (= 0.75%), results in remarkable speed improvement and achieves DOP imaging every 0.2525 s as
opposed to 2.2949 s for the ground-truth. In the Monkey experiments discussed later, we reduce the number
of IQ frames from 250 to 32 for the construction of one DOP image, resulting in the reduction of cwt by
87.2%. This is of great advantage to overcome the latency limitations and also hardware efficiency of fUS for
real-time brain-computer interfaces (BCIs) [13].

Generalization to a new mouse without fine-tuning. Next, we discuss the generalization of NO-fUS and
NO-£US-G, for fUS imaging from a new mouse whose brain’s images are not seen during the deep learning
training stage. We call this mouse, Mouse X, and consider one experimental session containing DOP images
from the resting state (Mouse X M1) and during visual stimulation (Mouse X M2). For the visual stimulation
experiment, the animal’s brain was activated with a visual stimulus every 10 DOP images, using 300 1Q
frames per DOP(fig. 2¢,d). For the remainder of the manuscript, we compare our proposed framework to only
DOP13,+SVDy;, and the best performing published deep learning framework, DeepFUS. Given DOPq;,+SVDsy11
performance on M1 and M2, NO-£fUS-G provides high-quality DOP imaging in the absence of any fine-tuning.
This improves upon NMSE and PSNR evaluation metrics compared to DOPy;,+SVD:i, performed on limited
1Q frames. In this case, NO-fUS does not perform as well as NO-fUS-G. Lastly, DeepFUS loses the ability to
capture detailed information on the blood flow shown by its poor performance metric, performing worse than
NO-£fUS and NO-£fUS-G.

We attribute the superior generalization performance of NO-fUS-G to two main architectural properties:
One is that, unlike DeepFUS, NO-fUS processes complex 1Q signals. Second is that NO-fUS-G leverages a
spatial guidance provided by limited-time-frame SVD, a feature that is missing in DeepFUS. To support
this, we performed additional experiments with all the deep learning blocks operating in the real domain,
using only the real portion of IQ input signal for NO-fUS (fig. 6). At first glance, the quantification results
on MultiMice test set may suggest that NO-fUS-real performs better than NO-fUS. However, having a
closer look, the complex framework NO-fUS has a much better generalization to Mouse X than NO-fUS-real
(fig. 6b,c), which throws away the information contained in the imaginary part of the IQ signal.

Despite the aforementioned state-of-the-art and promising performance, one of the obstacles to the
widespread usage of deep learning in practice is its lack of generalization and reliability beyond the trained
dataset, a problem also known as domain shift [34]. In medical imaging, this challenge, known as out of
distribution (OOD), is particularly evident when generalizing deep learning models from one experimental
session to another or from one brain to another [35]. As we demonstrated above, we have addressed this
challenge by guiding NO-fUS with an approximate DOP image constructed by the SVD method, improving
generalization to new Mouse X in the absence of fine-tuning. Next, we propose an additional strategy to
further enhance generalization and expand the practical usage of NO-fUS to new species and new sessions.

Practical generalization of NO-fUS on new sessions and new animals. We discuss a highly
efficient and fast fine-tuning process for NO-fUS to construct DOP images across different species. In this
setting, we take NO-fUS, trained on MultiMice, and fine-tune it on the session of interest for different target
species. We demonstrate that NO-fUS can be fine-tuned efficiently and quickly on a single GPU (e.g., NVIDIA
GeForce RTX 4090), allowing users to apply NO-fUS for imaging from new mice, monkeys, and humans
(fig. 3). For details on the fine-tuning process, see Supplementary Methods.

Mouse experiment. Focusing on Mouse X, which was excluded from the MultiMice train set (fig. 3a,b),
we fine-tune (ft) NO-fUS, trained on MultiMice, on only two DOP images from the beginning of M1 for
1600 steps. This fine-tuning process took only 6.13 and 6.15 minutes for NO-£US;, and NO-fUS-Gg, on an
NVIDIA GeForce RTX 4090 GPU-accelerated machine; we note that using a more powerful GPU can further
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for Monkey data. The remainder of the methods, DOPyi;+SVDsy11, DOP1iy+SVD1iy, NO-£fUS¢y, NO-fUS-Ggy,
and NO-fUSg,, are all based on 32 IQ frames. a-b, Performance visualization and quantitative analysis from
mouse brain for M1 and M2 runs. c-d, Monkey visualization and quantitative results from two sessions of S1
and S2. e-d, Visualization and quantitative results for two sessions of H1 and H1 from Human experiments.

shorten the fine-tuning duration. While DOP;;,+SVD1 3, using limited IQ frames (K = 32) captures the spatial
properties of blood flow, it is noisy and sensitive to the SVD threshold, and can end up removing blood flow
information in some cases (fig. 3a); this results in relatively low structural similarity in some examples, and
overall poor average reconstruction even though it offers high SSIM for a portion of the dataset (fig. 3b).
NO-fUS’ data-driven methods can resolve this problem. We observe that NO-£fUS¢, reconstructs DOP imaging
better than DeepFUS,, (See Supplementary materials). In particular, NO-£USs has better generalization on
M2, which is not seen during the fine-tuning stage.

We attribute this superior performance to the temporal IQ frame processing by NO-fUS, which captures
an intrinsic property of the Doppler image that is missing in DeepFUS. However, we observe that NO-fUS
misses some structural details in the DOP image, which can be improved by adding SVD guidance, i.e.,
NO-fUS-G¢; achieves results that is close to the upper limit DOP;;,+SVDsy11. This highlights the practicality
of the NO-fUS fine-tuning pipeline. Indeed, training NO-fUS from scratch, NO-fUS, for the same duration
as fine-tuning, results in a poor DOP imaging (see Supplementary Materials for fine-tuning results using 16
images). Having observed the superior generalization of NO-fUS over DeepFUS, we focus on the comparison
between our proposed NO-fUS method and SVD-based methods for the remainder of the manuscript.

Monkey experiment. We highlight the applicability of NO-fUS for functional ultrasound neuroimaging




in Rhesus macaques (fig. 3c,d). We consider three sessions - S1, 82, and S3 - from Monkey Y. We fine-tuned
NO-fUS, which was previously trained on MultiMice, on 120 DOP images from the beginning of S1 using
only 3600 gradient steps; this process took 7.07 and 7.15 minutes on our GPU-enabled machine for NO-fUSg,
and NO-fUS-Ggy, respectively (see Supplementary Material for training on 5 DOP images and performance
from lower number of training steps). We then evaluate the performance on the remainder of the frames in
S1, and the full sessions of S2 and S3, which were not seen during the fine-tuning stage. The desired DOP
image in the monkey experiments was computed using 7' = 250 IQ frames. We construct the DOP using
only K = 32 IQ frames. DOPy;,+SVD;i, captures the general spatial properties of the blood but misses some
details due to the sensitivity of SVD thresholding performed on limited times frames. As discussed before,
this is evident from the large variance in reported NMSE across the dataset and low PSNR. NO-fUS¢, shows
much better performance than DOPy;,+SVD1i,, but it still misses some of the fine blood flows (fig. 3c). This
limitation arises from the fully data-driven nature of NO-fUS. We address this limitation using our best
performing framework, NO-fUS-G¢¢, which shows performance very close to the upper bound DOPy;,+SVDgy11 -

Given the fine-tuned NO-fUS on S1, we next highlight its ability to generalize on new unseen sessions,
S2 (fig. 3c, second row). First, we emphasize that training NO-fUS from scratch NO-fUSg, on these sessions
results in very poor DOP imaging. While DOP;;,+SVD1i, is better than NO-fUSg., it suffers from the same
above-discussed limitations. NO-fUS-Gy, significantly improve upon DOPq;,+SVD;i,. Notable performance of
NO-£US-Gg¢¢ is that it gets very close to DOPyj,+SVDsy11 and offers a less noisy, hence higher PSNR, DOP
image on a session that is not observed during the fine-tuning stage.

Human experiment. Finally, we show the applicability of NO-fUS for imaging from a human subject with
an acoustic cranial implant (fig. 3e,f). In these experiments, we used the NOfUS that is already trained on
MultiMice and only fine-tuned it. For evaluating imaging quality, the desired DOP image was computed using
T = 300 IQ frames, the ground-truth (DOPsy11+SVDsy11). We focus on performance in two separate human
sessions (H1, H2). We fine-tuned the data-driven models on 32 DOP images captured from the beginning
of the H1 session at the original Doppler imaging rate using 300 IQ frames. Results highlight that while
DOP;i,+SVD1iy is sensitive to the threshold used for the removal of the tissue clutter, NO-fUS successfully
filters out a majority of the tissue clutter without removing useful blood flow information (fig. 3e). Moreover,
NO-fUS provides a DOP image that is less noisy than DOP;;,+SVDsy11. This results in better quantitative
performance of NO-fUS-G¢y than DOPys,+SVDsy11 (fig. 3f). For reference, we show that the generalization of
NO-fUS is unreachable if one trains the model from scratch, i.e., NO-fUSg;. Our reported results also apply
to the new human session H2 which is not seen at all during the fine-tuned stage.

Behavioural decoding using NO-fUS. {US-based BCI is an emerging technology that can decode
movement and planning from fUS signal, advancing technology that can allow subjects to control robotic
limbs and other assistive devices with their thoughts [12, 13, 14]. We propose to use NO-fUS to power BCls
to reduce the latency and efficiency of decoding. Unlike prior published deep-learning methods, we show in
both monkey and human experiments that NO-fUS not only produces high quality DOP reconstructions but
also preserves important behavior-related information within reconstructed images that can be useful for
decoding purposes in BCls.

Monkey experiment. NO-fUS is capable of computing DOP images from fewer frames of the acquisition.
The original DOP frame rate offers one image per 250 IQ frames resulting in total of 3 DOP images within
a 1.5 s memory period; NO-fUS increases this rate by approximately 8x and provides 24 DOP images
within the same memory period, each from 32 IQ frames. Similar to the above-discussed results, NO-fUS
was fine-tuned on the first 120 DOP frames from S1 session and then used for inference across all other
sessions. This increased imaging rate is well-suited for implementation in an online decoder, suggesting
potential for real-time decoding applications. We evaluated the performance of NO-fUS and NO-fUS-G against
DOP; i, +SVDyiy using 32 IQ frames and the oracle DOPq,+SVDsy11, which de-clutters the fUS signal using all
250 IQ frames.

fUS data was obtained from a rhesus macaque monkey while it performed two different eye saccade tasks:
a task that varies direction of saccades (S1 and S2, fig. 4a) and a task that varies the saccade distances (83,
fig. 4¢c). The goal was to decode the monkey’s movement planning prior to the action. We used an offline
decoding pipeline based on principal component analysis (PCA) for dimensionality reduction and linear
discriminant analysis (LDA) for decoding to predict the monkey’s planned movement directions/distance
after complete data collection (see Supplementary material for more details).

Using this pipeline, we evaluated the decoding performance over a sliding window of 3 DOP images
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Figure 4: NO-fUS-powered BCI to Decode Thoughts from Monkey. a, Memory guided saccade task
(sessions S1 and 82) for decoding varied directions for target/fixation points. £1000 ms of jitter for fixation
and memory periods; +500 ms of jitter for hold period. The peripheral cue was chosen out of four possible
target locations (up, down, left, and right). The red square signifies the monkey’s line of sight. Horizontal
and vertical decoding was done. b, Decoding performance for S2. Left panels show decoding performance
comparing all methods. The remaining panels on the right show decoding performance individually for each
method as DOP frame rate in the decoding sliding window decreases from full 8 DOP images to 1 DOP
per second. The vertical lines denote the Cue and Go onsets. ¢, Memory guided saccade task (session S3)
for decoding varied distances or "eccentricity (ecc)" between fixation and target. +1000 ms of jitter for
fixation and memory periods; £500 ms of jitter for hold period. The green line is for long-range right-ward
saccades, and the yellow line is for short-range rightward saccades. The peripheral cue was chosen out of
four possible target locations (fixation point at top, short-range rightward saccade, fixation point at bottom,
short-range rightward saccade, fixation point at top, long-range rightward saccade, and fixation point at
bottom, long-range rightward saccade). The red square signifies the monkey’s line of sight. Since the fixation
point varied vertically, both eccentricity and vertical decoding were done. d, Decoding performance from S3.
The first row shows eccentricity (ecc), and the second shows decoding vertical movement planning. Panel
format is similar to b.
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Figure 5: NO-fUS-powered BCI to Decode Planning from Human. a, Instructed delay motor task
for human experiments. The participant was asked to fixate on a central fixation cross and then perform
the cued movement upon cue. The participant was asked to repeat the movement until the cue disappeared.
Trials were separated by an inter trial interval (ITI) to allow fUS signal to return to baseline. b, The decoding
accuracies over time across a trial for all methods using full DOP information from all 9 DOP images. ¢, The
decoding accuracy across time for each method when reducing the number of images averaged to generate one
DOP image. Each sub-figure corresponds to one method, containing decoding curves when 1 DOP (yellow)
to 9 DOP (full information, dark blue) images are used. d, Combined mapping of statistically significant
regions of interest generated from general linear modeling (GLM) for each effector across each model.

in length. We first compared the average decoding accuracy over time across a trial for different models,
DOP1 iy +SVDsy11, DOP1ip+SVD1iy, NO-fUS and NO-fUS-G, using all 8 images. Then we examined how decoding
accuracy changed as the amount of information per DOP was reduced. This was done by comparing decoding
accuracy as the total number of images averaged to generate one DOP image, ranging from 8 images (dark
blue) to 1 image (yellow), was reduced, effectively reducing frequency of DOP sampling.

Results confirm that when full information is used, NO-£fUS and NO-fUS-G can preserve behavioral features
and achieve similar accuracy as the SVD-based decluttering baseline (fig. 4b,d). Moreover, findings in fig. 4b,d
suggest that NO-fUS and NO-fUS-G are more robust to the decreasing frequency of DOP sampling (dark blue
to yellow color) compared to DOPy;,+SVDyip.

Human experiment. We demonstrate that NO-fUS is similarly able to maintain behavioral information
in a human subject using the same analysis for monkey decoding. We compared the decoding performance
of NO-£fUS and NO-fUS-G with SVD-based approaches using data recorded from a human subject with an
acoustic cranial implant. For DOP reconstruction, all methods provide one image per 32 IQ frames from the
original 300 IQ frames. This results in 9x more DOP images compared to the original ground truth using all
300 IQ frames to construct one DOP image.

fUS data was recorded from the primary motor cortex of a human participant with an acoustic cranial
window implant while they performed randomized instructed movement tasks in block task format. The
subject first fixated on a central fixation cross and then was cued to move the chosen movement effector
for a set period of time. During this period, the subject was asked to repeat the movement until the cue
no longer remained on the screen. Movement effectors included the right index finger, right wrist, lip, and
tongue (fig. 5a). DOP data was then processed and analyzed offline using general linear modeling (GLM) to
map significant task-correlated voxels (p < 1073). DOP data underwent the same offline decoding pipeline
as used for the above monkey decoding experiments to decode cued movement effectors. Using traditional,
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groundtruth DOP images, movement effectors could be significantly decoded above chance level at more
than 75 percent accuracy.

We used a causal sliding window of 1 DOP image in length to calculate decoding performance over time
across a trial. We also examined performance as the amount of information per DOP image was reduced.
Like in monkey, this was done by comparing decoding accuracy as the total number of images averaged to
generate one DOP image was reduced. However, in human, this ranged from 9 images (dark blue) to 1 image
(yellow). When comparing decoding accuracies using the full number of images across models, NO-£fUS and
NO-£fUS-G had slightly lower decoding accuracy than DOPy;,+SVDsy11, and DOPy;,+SVDys, (fig. 5b). However,
when examining their performance using fewer DOP images, NO-fUS shows decoding performance similar to
that of the SVD-based methods. Moreover, the decoding accuracy of SVD-based approaches is not robust
to the amount of information provided in each window. Their performance decays once they reach only
one DOP image. On the other hand, NO-fUS robustly maintains decoding performance as the number of
images is reduced (fig. 5¢). Finally, the GLM analysis demonstrates that NO-£fUS and NO-£fUS-G preserve the
functional behavior mappings similar to the SVD-based approaches. However, while NO-fUS and NO-fUS-G
produce similar representations, they also include substantial noise.

3 Discussion

Functional ultrasound (fUS) imaging is an emerging neurotechnology with significant potential for
widespread application in long-term, minimally invasive neurorecording during active movement and behavior.
fUS offers advantageous sensitivity and spatial resolution compared to fMRI and EEG, and is a less invasive
option than microelectrode recording with a greater field of view (although less temporal resolution) [6]. A
major disadvantage of fUS is that it is limited by the large number of cohesively compounded intermediate
frames required to construct a single Doppler power (DOP) image (approximately 250-300 frames). Thus
fUS acquisition is computationally inefficient. It requires thousands of pulses per DOP, which can result in
delays due to increased time needed to store and transfer the data needed to construct a single DOP image.
Additionally, this process can result in in detrimental probe heating during prolonged imaging, particularly
with an increased number of probe elements. These limitations are expected to become even more significant
as advances in fUS imaging technology, such as 3D volumetric imaging, further increase the data requirements
for providing a single DOP image.

We propose the neural operator for functional ultrasound (NO-fUS), a deep learning solution that can
reduce the frames needed to reconstruct a high-quality fUS image. We highlight the capability of NO-fUS
in the reconstruction of DOP images while the number of input frames is reduced by 90% (from 250-300
frames to 32). We provide two variants of NO-fUS, one that is fully data driven, and another that is guided
by an approximated DOP image. NO-fUS is carefully designed for spatiotemporal processing via neural
operators, allowing for a change in the in-phase and quadrature (IQ) sampling rate without loss of image
quality. This work highlights this capability by reducing the sampling rate by 50%. Optimizing hardware can
only partially address this issue. Moreover, existing deep-learning methods for reconstructing DOP images
from fUS data a) do not take into account spatiotemporal filtering of fUS data, b) do not support change of
IQ sampling rate or number of frames, and c) fail to test the extent reconstructed images can be used to
decode behavioral variables [20]. NO-fUS is a highly generalizable deep learning framework and achieves
the state-of-the-art. NO-fUS not only offers structurally similar high-quality DOP images from significantly
reduced frames across multiple species and sessions but also retains decodable information within DOP images
shown by the comparable behavioral decoding accuracies computed from NO-fUS reconstructed images.

NO-fUS provides high-quality DOP reconstruction from limited complex 1Q signals, achieving visual
quality and image similarity metrics comparable to the current fUS standard SVD, while using a fraction
of the time and data. This reduces the need for computationally demanding processing and filtering [19].
NO-fUS consistently outperforms other deep learning methods, such as DeepfUS [20], in these metrics. We
attribute this generalization to the novel architecture of NO-fUS, which respects the complex and temporal
nature of the data via neural operators, unlike DeepfUS. Furthermore, NO-fUS is capable of constructing
high-quality DOP images across different sessions, planes, and even organisms, both with and without
fine-tuning a small subset of data. Training and fine-tuning can be efficiently performed on a single GPU.
Thus, NO-fUS presents a user-friendly and highly practical technique for providing DOP images from reduced
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1Q frames, applicable to a broad range of fUS experiments without requiring substantial modifications to the
fUS acquisition pipeline.

Beyond structural image similarity metrics, NO-fUS is the first deep-learning method capable of recon-
structing DOP images from reduced IQ frames with flexible IQ frame rates while preserving accurate decoding
of complex behavioral information within the reconstructed images. While, DeepfUS is able to produce
task-evoked functional activation maps similar to state of the art methods, these maps degrade as data
sparsity increases, and they do not examine DeepfUS’ ability to decode complex behavioral information,
focusing only on task-correlated activity for a visual-stimulation task.

NO-fUS achieves high decoding accuracy comparable to the ground-truth SVD-based approaches across
various behavioral tasks in both NHPs and human subjects for multiple task conditions. Importantly, this
decoding accuracy remains robust as the amount of information used per DOP is reduced unlike in DeepfUS,
whereas the accuracy of the SVD-based fUS declines significantly when the information is reduced to 32 frames.
This capability supports applications of fUS for decoding behavioral information as part of a brain-machine
interface (BMI) by enabling up to a 7 to 9-fold increase in the number of DOP images generated per unit
of time, thereby providing more DOP images for decoder training, and allowing for a faster frame rate
of imaging. Additionally, we demonstrate that NOfUS produces similar task-correlated activation maps
through GLM analysis as the ground truth, confirming that NOfUS replicates spatially specific task-correlated
activity. However, we caution against directly using NO-fUS for mapping behavior, such as through GLM
analysis, due to the presence of noise and the potential for signal hallucination, as shown in (fig. 5d). Despite
this limitation, NO-fUS is a robust method for constructing DOP images from less data (reducing both
the collection wait time and the original frame rate) without significantly compromising critical behavioral
information. These findings demonstrate that NOfUS has potential to improve upon real-time fUS-based
BCT’s by providing increased imaging frame rate and increased image samples for decoder training over the
same period of time as traditional fUS using fewer data frames.

It is important to note that NO-fUS does not enhance image quality or decodability relative to the standard
being currently used but is rather a supplementary tool that can be used to improve the computational
efficiency of fUS acquisition and processing by reducing the frame rate and collection wait time. NO-fUS
offers an approximated reconstruction of the ground-truth DOP image but is not a perfect replication. Similar
to any data-driven approach, it also has the potential to introduce artifacts in signal over time, as seen
during GLM analysis. Additionally, NO-fUS is a deep-learning framework; hence, it requires a training stage
and a dataset consisting of IQ/DOP pairs. In the case, where we guide the NO-fUS using an approximated
input DOP, NO-fUS may show poor performance if the quality of the approximated DOP is low. Despite
these limitations, NOfUS still presents large potential in advancing fUS neurotechnology as a supplementary
package.

To conclude, NO-fUS’ ability to construct high-quality DOP images from reduced compounded 1Q frames
and a reduced frame rate allows researchers to use less resources to provide similar quality fUS images. This
presents a crucial advancement for the future of fUS neurotechnology. While current parameters for fUS
imaging operate at an acceptable temporal resolution and safety index, as fUS requires more data such as
for volumetric imaging, computational and storage efficiency will become a major limiting factor. The large
number of pulses used during 3D imaging may put subjects at risk of probe heating, and the vastly large data
will be a huge challenge to store. The proposed NO-fUS architecture has the potential to be adapted for such
advancements to reduce the number and rate of pulses and data needed per DOP image, reducing storage
and heating concerns. As such, NO-fUS not only can be applied to advance current fUS neuroimaging but, in
fact, has an even larger potential for improving fUS imaging in the future.
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