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Abstract

We study human reposing and virtual try-on from multi-
view images. Unlike existing works which take a single im-
age as an input, we learn from multi-view images which
are readily available in most fashion datasets and provide
rich information on the geometric structures and textures
of the human and garments. To this end, since each input
view provides partial observation of the person and under-
lying garments, an appropriate design of parsing and fusing
multi-view information for the target image proves essen-
tial. We propose a novel framework for warping and fus-
ing reference human images from multiple and varied view-
points and poses to a target viewpoint and pose. The frame-
work is effective as it considers both 3D human body geom-
etry and 2D photorealism. We also introduce a conditional
patch discriminator to further improve image quality. The
proposed method outperforms state-of-the-art single-view
methods. Specifically, in our experiments with the Deep-
Fashion dataset, we show significant improvements in terms
of visual quality, PSNR, SSIM, FID and LPIPS metrics over
the existing state-of-the-art approaches.

1. Introduction
In this paper, we study the problem of photo-realistic

human image synthesis. The task is becoming increas-
ingly popular due to its wide-range applications, including
novel view synthesis, virtual try-on, human reposing, mo-
tion transfer and avatar creation, to name a few. For most
human image synthesis applications, reference images are
needed to guide the target human pose and appearance (in-
cluding face, skin and garment appearances).

Human image synthesis is a challenging task because:
(1) Human body consists of several articulated parts. It is
nontrivial to synthesize a human image that accurately rep-
resents the 3D structure of individual body parts as well as
the holistic relationships among them. In other words, ac-
curately incorporating the geometry and part relationships
is important for the realism of a synthesized human image.
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Figure 1. To synthesize a human image with a different pose, ex-
isting work [2] takes a single image as input, whereas we show
synthesizing from multi-view images leads to higher performance.
For instance, the synthesis results benefit from additional observa-
tions of the human (left) or the design of our approach that en-
hances the synthesized garment texture details (right).

(2) Realistic garments are hard to synthesize. As non-rigid
objects, the garments may fold and their texture may al-
ter differently on different parts of the human body. This
greatly increases the difficulty of rendering human images
with high fidelity and photorealism.

Unlike existing methods which take a single-view refer-
ence image as input, our approach alleviates the aforemen-
tioned challenges by learning from multi-view reference
images (Fig.1). Synthesizing images from multi-view in-
puts has several advantages: (1) Multi-view human images
are common, easy to obtain and readily available. For ex-
ample, in the fashion industry, it is common to shoot a cer-
tain garment from multiple views for a better visualization
experience. This provides large-scale readily-available im-
ages for designing multi-view human image synthesis sys-
tems. (2) The geometric and holistic structures of a human
body can be better parsed, represented and synthesized from
multi-view input images. (3) The whole garment is never
visible from a single view. Also, for many poses, different
body parts occlude garments. Using multiple views pro-
vides additional observations which enable the reconstruc-
tion of the entire texture of the garment in high fidelity.

Synthesizing novel images from multi-view inputs has
shown great potential and success for objects and scenes



[4,25,33], but has not been widely adopted in human image
synthesis. Existing human image synthesis works mainly
focus on synthesizing from a single image [2, 11]. They
are able to successfully synthesize human images when the
view change from the reference to the target is not dras-
tic. [38] further improves the synthesis quality with garment
warping techniques. However, the quality suffers with dras-
tic view changes due to occlusions and limited visible re-
gions from a single view. We propose a novel approach
that efficiently parses and fuses multiple input images for
synthesis. Some recent works reconstruct 3D models from
multi-view person images [31, 39] and use these models to
render human images from novel viewpoints. These ap-
proaches provide high-quality human body shape recon-
struction. However, they are not able to generate the texture
maps accurately due to the difficulty of registration among
different views. In this paper, we directly synthesize human
images to enhance textural quality and photorealism.

Our method takes a pose image (pose reference) and
multi-view human images (appearance reference) as in-
puts1. Firstly, we warp multi-view images to the target
pose and bring all images to the same pose. We perform
the warping in both 3D human body UV space and image
pixel space to take advantage of the respective domains. We
base our UV space warping on DensePose [12], a popu-
lar 3D geometry-aware human pose estimation algorithm.
For pixel-space warping, we use the thin-plate spline (TPS)
transformation [7], which takes into account correspon-
dences in the pixel domain to deform the garments from
the source poses to the target pose. While using UV space
warping from multiple views allows texture reconstruction
of all parts of the target pose including skin pixels, it usually
fails to preserve texture details. Pixel space warping is not
always complete, however, it preserves the texture details
since it uses an image domain transformation (TPS). We
encode the warped multi-view human images as appearance
features, and fuse them using visibility confidence maps. In
our experiments, we show that the proposed design of multi-
view fusion is essential for the success of the synthesis. Fi-
nally, we decode the encoded appearance and pose features
to generate the synthesized image. To preserve the realism
of the generated images while preserving the generated gar-
ment texture, we propose using a patch-based discriminator
that uses patches from both appearance sources and the gen-
erated image and encourages their co-occurrence.

We summarize our contributions as follows: (1) We de-
sign a novel multi-view fusion approach that is non-trivial
and necessary for a successful multi-view human image
synthesis. Our results demonstrate that multi-view human
image synthesis significantly outperforms single-view syn-
thesis. To the best of our knowledge, we are the first to

1Our approach also works for a single-view image as the input, which
can be considered as a special case of the multi-view inputs.

study multi-view human reposing and virtual try-on. (2) In
contrast to previous methods that either use warping in UV
space or pixel space, we propose to warp source images in
both UV and pixel space to take advantage of the benefits
of both approaches to improve the rendering quality of the
human skin as well as the garment textures. (3) We intro-
duce a conditional patch loss that improves the fidelity and
details of the generated images.

2. Related Work
Image-Based Clothed Human Synthesis. Clothed human
image synthesis has recently attracted much attention. With
the success of StyleGAN and its variants for generating
high-quality images [17, 18], most state-of-the-art human
image synthesis methods [8, 32] adopt StyleGAN as the
backbone network or inherit it as their fundamental build-
ing blocks. In addition to unconditional human image syn-
thesis methods aforementioned, conditional synthesis meth-
ods have also been developed. Such human image synthesis
methods are usually conditioned on human poses, enabling
applications like human reposing [2, 23, 24], motion trans-
fer [1,41] and virtual try-on [32,38]. Specifically, PoseGAN
[20] adopts StyleGAN architecture and conditions it on es-
timated human pose images. Pose-with-Style (PWS) [2]
builds upon PoseGAN and further warps source appearance
images to the target pose with a pose-guided appearance
flow. They show improved performance when adding the
warped appearance images to StyleGAN. All these existing
works take a single image as input. In this paper, we explore
using multi-view images as input as they provide more in-
formation for improving the quality of the synthesis task.
Novel View Synthesis from Multi-View Images. Novel
view image synthesis has been a well-studied task in the lit-
erature. Tatarchenko et al. [35] directly generate the target-
view image, while Zhou et al. [44] consider the task of
novel view synthesis as predicting dense flow fields that
map the pixels from the source view to the target view. Neu-
ral rendering [25, 42] represents another promising direc-
tion. [22, 25] learn volumetric neural scene representations
for novel view synthesis. HumanNeRF [37] extends the
idea to human image synthesis and generates novel human
images from monocular human videos. Neural rendering
methods usually need to be trained on each specific exam-
ple, and thus are not time-efficient for inference. Other re-
searchers also study direct reconstruction of 3D shapes from
source images, with more details in the next subsection.

Human image synthesis from multi-view images has not
been actively studied before. To the best of our knowledge,
we are the first to study this task.
3D Human Reconstruction. Another category of methods
directly reconstruct a 3D model (e.g., mesh with texture)
from a single human image. Novel-view images then can
be rendered from the 3D model. SfM [26] and SLAM [9]
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Figure 2. Overview of our method for human reposing. We take a pose image PT as the reference for the target human pose, as well as
multi-view human images {IiS} as the reference for the target human appearance, i.e., the face identity, the skin tone and the garment tex-
ture. Pose reference PT is fed to the pose encoder EP for the pose feature fP . Appearance reference images {IiS} and their corresponding
garment segments {Ci

S} are warped to the target pose in both UV and pixel space (Section 3.1), and encoded as an appearance features
{f i

A} with the appearance encoder EA. {f i
A} of every view is fused to an aggregated appearance feature fA based on visibility from each

source to the target pose (Section 3.2). The StyleGAN2-based [18] decoder D takes the structure and the appearance feature fP , fA and
decodes them as the output image ÎT . To improve the synthesis quality, we supplement a conditional patch discriminator to the generative
adversarial networks (Section 3.3). The method could be easily adapted for virtual try-on during inference.

successfully handle multi-view 3D reconstructions in var-
ious real-world scenarios, but their performance may suf-
fer when the input data is scarce or is not representative of
varied viewpoints. Recently, deep learning methods have
taken leads in further improving the reconstruction quality
by completing the occluded or hollowed-out areas [16, 40].
Specifically, for 3D human reconstruction, SMPL [5] recon-
structs 3D human vertex-based model which is able to han-
dle a wide variety of body shapes in natural human poses.
PiFU [31] further estimates the human body texture from
the image, and is able to handle single or multi-view inputs.
While researchers are working to further improve the re-
construction quality [3, 39], the texture of the reconstructed
model is often not of high quality. In contrast, we do not use
the 3D model reconstruction as an intermediate step to syn-
thesize the human image. Instead, we directly synthesize
novel-view images from multi-view inputs.

Improving the Quality of Synthesized Garments. Efforts
have been made to further improve garment quality in the
synthesized images. VITON [13] first integrates a UNet-
based [30] generation network to its deformation-based ap-
proach for garment synthesis in a novel view. Wang et
al. [36] first deform the source garment to the target shape
and then synthesize the try-on result. PASTA-GAN [38] fo-
cuses on the frontal view for human image synthesis, and
proposes a patch-based method for garment deformation.
On the contrary, we propose a new garment deformation
method, which works for drastic view changes as well and
is capable of taking multi-view garment images as input.

3. Methods
We illustrate the overall human image synthesis frame-

work in Fig.2. Two references are fed to the network for
image synthesis: target pose PT and multi-view appearance
images {IiS}. Multi-view appearance references are warped
to the target pose, encoded and fused to the appearance fea-
ture fA. The target pose is encoded as the pose feature fP .
A decoder takes both fA and fP to decode the output image.

We introduce each component of the framework as fol-
lows: we first discuss how multi-view appearance reference
images are warped to match the target pose in Section 3.1,
and then present the encoder that fuses multiple views and
the decoder in Section 3.2. Finally, in Section 3.3, we pro-
vide details on the training procedure and the loss functions.

3.1. Source-to-Target Warping

Let us consider a special case where only a single source
image IS exists. The appearance reference image IS and
the target image IT to be synthesized usually have different
human poses which we denote by PS and PT , respectively.
To improve the quality and realism of the synthesized im-
age, we warp the source image IS and garments CS , so that
their human pose matches with the target pose (Fig.3). We
present warping details in Sections 3.1.1 and 3.1.2.

Now we consider the case where N multi-view source
images {IiS}i=1,2,...,N are used as inputs. For the ith view,
we estimate the human pose P i

S with DensePose [12] from
the source appearance image IiS . Firstly, based on the corre-
spondence between the source and target poses P i

S , PT , we
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Figure 3. Appearance warping in UV and pixel spaces. Multi-
view appearance reference images {IiS} and corresponding gar-
ment segments {Ci

S} are warped from the source pose to the tar-
get pose for improving the synthesis quality. Specifically, image
IiS is warped to target pose W (IiS) in the UV space based on the
inpainted human texture UV map. Garment Ci

S is warped in the
pixel space to the target pose T (Ci

S). The warping in both spaces
guarantees the synthesis quality in terms of both 3D human body
geometry and 2D photorealism. Based on the common regions be-
tween the source and the target pose, the visibility map V i

S is also
generated to aid the multi-view fusion.

compute the visibility map V i, which indicates the regions
in the target image that is also available in the ith source im-
age. Additionally, as discussed before, the source image IiS
is warped as W (IiS) to match the target pose, and the source
garment Ci

S is also warped as T (Ci
S). All N images are en-

coded as features and fused for image synthesis, which we
discuss in detail in Section 3.2.

3.1.1 Warping in UV Space

We warp input appearance image IiS of the ith view to match
the target pose PT . The UV map of a human pose P i

S from
the source view i makes it possible to obtain pose-agnostic
3D-human-body-shape-aware UV texture map. One issue
here is that the texture map is missing the regions that are
not available in IiS due to occlusion. We thus follow [2]
to inpaint the missing regions and obtain the full human
texture map T i

S . Further, we introduce a confidence map
to help the network better understand which regions in the
warped image are inpainted and which regions are derived
directly from the source image. Specifically, based on the
correspondence between the source pose P i

S and the target
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Figure 4. 3D-aware warping in UV space. The goal is to warp
ith source image IiS to the target pose PT . First, based on the
correspondence between the estimated source pose P i

S and target
pose PT , the visibility map Vi is computed. Then, based on the
source pose P i

S , the source image IiS is mapped to the UV-space,
and inpainted to obtain the UV texture map T i

S . UV map can be
mapped to 2D W (IiS), which is the warped image. W (IiS) and Vi

are later used for multi-view fusion.
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Figure 5. 2D garment spatial deformation. The garment Ci
S is

segmented from ith view source image IiS . To warp Ci
S so the

garment fits the target pose, corresponding control points Qi
S and

target points Qi
T are sampled from the source pose P i

S and the
target pose TS

i , respectively. Guided by the point pairs, the source
garment Ci

S is then warped to the target pose with thin plate spline
(TPS) transform [7] . Note that the upper body and the lower body
garment (not depicted in the figure) are segmented and warped
separately, and are both fed to the network for synthesis.

pose PT , we compute the visibility map Vi, which will be
later used in our multi-view fusion (Section 3.2). Since we
also use the target pose PT as input, corresponding pixels
can then be mapped to the target pose from the texture map
T i
S to obtain the warped image W (IiS). The warping proce-

dures are also illustrated in Fig.4.

3.1.2 Warping in Pixel Space

We warp garments from the ith source pose P i
S to the target

pose PT to provide additional guidance for the network to
synthesize the target garments. PASTA-GAN [38] is one of
the first works which demonstrates that adding additional
deformed garments improves the quality of the synthesized



clothed human image. However, PASTA-GAN cannot han-
dle drastic pose changes (e.g., front view to side view) be-
cause: (1) Their patch-based garment deformation is de-
signed for the full-body frontal view of a human. It is hard
to generalize to difficult cases where drastic view changes
are present. (2) Their deformation is based on OpenPose [6]
which encodes body skeletal pose and hence cannot differ-
entiate front vs. back or different 3D body shapes.

We propose a DensePose-based garment deformation
method which works well with drastic view changes (Fig.5).
Our method can handle human poses from any viewpoint
and is aware of the 3D shape of the human body.
Garment Segmentation. For a source appearance image
IiS of the ith view, we first segment the upper body garment
and the lower body garment with Graphonomy [10], which
is an off-the-shelf clothed human image segmentation algo-
rithm. The upper and lower body garments go through the
same procedure for deforming to the target pose. Here, we
only discuss one of the segmented garments denoted by Ci

S .
Obtaining Corresponding Points from Poses. To guide
the garment deformation, we find corresponding points on
the source pose P i

S and the target pose PT . For this we
find grid points in the UV space of source and target poses
P i
S , P

i
T

2. Each point in the grid has two values for {u, v}
and the corresponding pixel coordinate values {x, y}. Grid
points on PT , PS that share the same UV values refer to the
same locations in the 3D human body defined by Dense-
Pose [12]. Due to occlusion, only visible grid points are
mapped to 2D pixel space. J points that are available in
both source and target images are thus found and consid-
ered as correspondences. We denote such coordinates on
source image as control points Qi

S = {xij
S , y

ij
S }j=1,...,J ,

and corresponding coordinates on target image as target
points Qi

T = {xij
T , y

ij
T }j=1,...,J .

Garment Deformation. If there is a drastic change be-
tween the source and the target pose (e.g. front and back),
we do not deform garments and only use UV warping re-
sults to guide the synthesis. When the number of control
points J is larger than 30 (a heuristic threshold we adopt
in the paper), we use thin plate spline (TPS) transforma-
tion [7] for garment deformation. Specifically, TPS trans-
forms source garment Ci

S to the target pose using the source
control points QS and corresponding target points QT . Ex-
amples of the deformed garment T (Ci

S) are in Fig.5.

3.2. Multi-View Fusion and Image Synthesis

Encoding Images to Features. We take N images
{IiS}i=1,...,N as inputs. After warping, we obtain warped
source images {W (IiS)} and garments {T (Ci

S)} 3, which

2The sampling interval of the x and y grid locations is 10 in a 256×256
UV map.

3As discussed before, we process both upper-body garment and lower-
body garments. For convenience, we denote the concatenated version of

are then encoded to multi-scale features following Style-
GAN2 [18]. Specifically, at layer l, the pose feature lfP is
a convolutional feature of target pose PT , while the appear-
ance feature of the ith view lf i

P is a concatenated feature of
the warped image W (IiS) and garment T (Ci

S).
Multi-View Fusion. We fuse all appearance features {lf i

A}
from N input views by weighted averaging. The visibility
map V i is a binary mask indicating the common regions be-
tween the ith source pose and the target pose. We use two
3× 3 convolutions separated by a ReLU activation function
to transform the concatenated visibility map V i and warped
image W (IiS) to a learned single-channel confidence map
U i. U i is then normalized to U i′ = {ui′

x,y}, such that the
sum of the N views of each pixel location ui′

x,y is equal to
1. That is,

∑N
i ui′

x,y = 1. At each layer l, U i′ is resized
to lU i′, which has the same spatial size as the appearance
feature map lfA. The fused appearance feature lfA is then
a sum of the products of each of the N view-dependent ap-
pearance feature maps lf i

A with their corresponding weight
lU i′ at each pixel location: lfA =

∑N
i

lU i′ ◦ lf i
A, where ◦

refers to the element-wise product for matrices.
Decoding to the Target Image. We use StyleGAN2 [18]
blocks with spatial modulation to decode multi-scale fea-
tures to images. We use a similar spatial modulation as
in [2] to preserve spatial structures of appearance feature
fA. Specifically, at layer l, the scaling α and bias β are
generated with 1×1 convolutions from appearance features
lfA. Pose feature is then modulated as lf ′

P = α lfP + β,

and normalized as lf ′′
P =

lf ′
P−mean(lf ′

P )

std(lf ′
P )

.

3.3. Patch Discriminator and Loss Functions

Conditional Patch Discriminator. Unconditional patch
discriminator [28] enforces co-occurrent patch statistics
across different regions of the image, and demonstrates im-
proved textural quality in image synthesis. We improve
upon it and adopt a conditional patch discriminator Dpatch
in addition to the full image discriminator. The goal is to
enforce the realism of patches as well as being similarity of
patches in the reference image. Given image patches of a
source image patch(IS) (whose view is randomly selected),
the discriminator is asked to distinguish between image
patches from the generated image patch(ÎT ) and those from
the ground truth IT . The corresponding patch loss for the
discriminator is calculated as:

Lpatch = E[− log(Dpatch(patch(ÎT ), patch(IT )|patch(IS)))] (1)

where Dpatch refers to KL-divergence that measures the
distance between the generated and ground-truth patches.
Empirically, we show improved performance with con-
ditional patch loss compared to unconditional patch loss
E[− log(Dpatch(patch(ÎT ), patch(IT )))] (Section 4.6).

the two warped garments as {T (Ci
S)}.
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Figure 6. Visual results on human reposing (left) and virtual try-
on (VTO, right). Our method synthesizes human images with high
fidelity in terms of geometric structures and garment textures.

Training Losses. In addition to the patch loss Lpatch, the
full image adversarial loss LGAN used in StyleGAN2 [18],
and the face identity loss Lface used in PWS [2], we also
minimize the L1 distance between the generated image ÎT
and ground-truth IT in both pixel and feature space:

Lrec = ∥ÎT − IT ∥1 +
k∑

l=1

∥ϕl(ÎT )− ϕl(IT )∥1 (2)

where k = 5, ϕl denotes the lth feature map in a VGG-
19 [34] pretrained on ImageNet. Here, we use 5 feature
maps. Therefore, Lrec minimizes the differences between
the generated image and the ground truth in terms of both
pixel appearance and pre-trained features.

Our final training loss is a combination of the above-
mentioned loss functions: L = LGAN + λ1Lrec + λ2Lface +
λ3Lpatch. For experiments, we set λ1 = 5, λ2 = 1, λ3 = 1.

4. Experimental Results
4.1. Implementation and Training Details

Implementation details. For human reposing, source im-
ages {IiS} with spatial size 512 × 512 were first fed to a
segmentation network [10] to obtain garment images {Ci

S},
which are then deformed with TPS [7]. Each source im-
age IiS and deformed garment image T (Ci

S) were fed to
an appearance encoder EA consisting of one convolution
layer and 5 ResNet [14] blocks with numbers of chan-
nels 64, 128, 256, 512, 512, 512 and output spatial sizes
512, 256, 128, 64, 32, 16. At each block, feature maps of
IiS are warped in the UV space to match the target pose PT .

For every viewpoint, appearance features of both image IiS
and garment Ci

S are concatenated and fused following pro-
cedures mentioned in Section 3.2. As another input, target
pose PT is fed to a pose encoder EP , with the same archi-
tecture as EA. To decode to the target image, at each block,
pose and structure features are fed to a StyleGAN2 [18]
block with spatial modulation mentioned in Section 3.2. We
adopt the same decoder architecture as [2].

For virtual try-on, instead of a target pose PT , a query
image IQ is fed to the network. Target pose is estimated
from IQ, and fed to the pose encoder EP . Also, IQ is
fed to the appearance encoder EA, together with garment
reference {IiS} and {Ci

S}. A garment mask M estimated
from IQ controls the regions to apply garment references.
Our experiments focus on virtual try-on for the whole body,
though the framework can generalize to partial body try-on.
Training Details. We use Adam optimizer [19] with a
learning rate of η · 0.002 and β = (0, 0.99η). For the gen-
erator, η = 0.8. For the full image and patch discriminator,
η = 0.9. The model is implemented with PyTorch frame-
work. The batch size is 8. We first train the model with loss
functions only on the human region of the output image for
50 epochs. We then fine-tune the model with loss functions
on the entire image for another 10 epochs. In total, our
training took 7 days on 8 NVIDIA V100 GPUs.
Inference Time. On a NVIDIA V100 GPU, generating a
reposing image takes on average 1.4 seconds while the vir-
tual try-on takes 1.9 seconds.

4.2. Datasets and Evaluation
Datasets. DeepFashion dataset [21] is used in this paper for
training and evaluation. We follow the same training and
evaluation split of PWS [2] for reposing. For virtual try-on,
we choose random pairs from the evaluation set. Specifi-
cally, there are 101,967 training, 8,570 evaluation pairs for
reposing and 8,570 evaluation pairs for virtual try-on.
Baselines. We compare with state-of-the-art methods [2,24,
27, 29, 38]. For fairness, we follow the respective settings
of the above methods, train and evaluate on the same split
of the DeepFashion dataset [21]. We also make a stronger
variant of PWS [2] that we call as PWS-closest pose. It
takes all available multi-view images, uses DensePose [12]
to determine the most similar input pose to the target pose,
and uses the input image with the closest pose for synthesis.
Evaluation Protocols. Following [2], we use the human
foreground peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), learned perceptual image
patch similarity (LPIPS) [43], and Frechet Inception Dis-
tance (FID) [15]. We report these metrics for comprehen-
siveness and fairness when comparing with other methods.

4.3. Reposing

We report quantitative results in Table 1 and some vi-
sual examples in Fig.6 and Fig.7. Our method compares fa-



source image target imagePASTA-GAN [38] PWS-closest [2] oursours-no garment deformadditional source image

Figure 7. Human reposing comparisons. For fairness, PWS [2]
and PASTA-GAN [38] consider all available input images and
takes the one with the closest pose (1st column, source image).
Our method takes multi-view images as input (with a sample ad-
ditional view in column 2) and outperforms baseline methods. We
synthesize images with higher fidelity, better geometric structures
and more realistic garment textures.

Table 1. Human reposing image synthesis results on DeepFashion
dataset [21]. Our method outperforms SOTA methods.

PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
PASTA-GAN [38] 14.51 0.49 34.54 0.170
PATN [27] 17.70 0.75 21.86 0.195
ADGAN [24] 17.72 0.75 16.27 0.175
GFLA [29] 18.04 0.76 15.17 0.167
PWS [2] 18.50 0.77 9.40 0.134
PWS [2]-closest pose 18.92 0.78 9.07 0.096
Ours (MV + dual warp.) 19.77 0.82 8.37 0.083

vorably against existing works such as PASTA-GAN [38]
and PWS [2]. Note that ours also outperforms a multi-
view baseline method, PWS-closest pose, which considers
all available input views and synthesizes from the one with
the closest pose. We observe improved visual quality of the
synthesized images with our method, especially in terms of
geometry and garment structure details.

Table 2. Our method outperforms SOTA for virtual try-on.
PASTA-GAN [38] PWS [2] PWS closest pose ours

FID 34.64 26.53 21.11 20.08

source image target image PASTA-GAN [38] PWS-closest [2] oursours-no garment deformadditional source image

Figure 8. Virtual try-on comparisons. All methods consider all
available input views. Our method outperforms baseline methods
with synthesized images of higher fidelity.

4.4. Virtual Try-On

We report quantitative comparisons with baseline meth-
ods in Table 2. Our method outperforms baseline meth-
ods [2, 38]. For visual comparison results in Fig.8, our syn-
thesized images have better visual quality, especially higher
fidelity in the geometric details and textures.

4.5. Synthesizing with Various Views and Poses
The proposed model allows us to re-render a human im-

age with a variety of viewpoints and many poses (Fig.9),
thanks to the multi-view inputs. Given multi-view source
images, we fit a 3D human model using PIFu [31]. When
rendered from novel viewpoints, the generated texture for
this model is not of high quality and not realistic. To gen-
erate realistic images from novel viewpoints, we first esti-
mate DensePose [12] PT from the PIFu rendered images,
and use our algorithm to synthesize human images. Fig.9
(left) shows such example synthesized images. Note that
the quality may be limited by the 3D human reconstruction
performance, for instance, the left hand in Fig.9 is not well
reconstructed by PIFu [31], and leads to lower synthesized
image quality in the hand region. For different poses, we es-
timate the target pose PT from another image in the Deep-
Fashion [21] evaluation set, which has a different human
pose (see Fig.9 right).

4.6. Ablation Study and Analysis
We conduct ablation studies and different design variant

analysis on the novel parts of the proposed method.
Garment Warping Module. We consider three variants:
(1) No garment warping, (2) OpenPose-based [6] garment
warping, and (3) The proposed garment warping with TPS



3D human 
estimation

source synthesized image with different view points synthesized image with different poses
Figure 9. Re-render human images with different view angles and articulated poses. We re-render a source image from various view angles
(by fitting a 3D human body model [31], lower left). We also re-render the source image with different articulated poses.

Table 3. Ablation studies and analyses of design variants of (a) the
garment warping module, (b) the multi-view fusion and (c) patch
discriminator.

(a) Garment Warping
PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

no garment warp. 19.03 0.79 8.81 0.091
OpenPose [6] garment warp. 19.34 0.81 8.67 0.089
our TPS garment warp. 19.77 0.82 8.37 0.083

(b) Multi-View Fusion
PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

no multi-view 18.92 0.78 9.07 0.096
naı̈ve average 19.18 0.80 8.81 0.088
sequential comb. 19.39 0.80 8.52 0.087
our multi-view fusion 19.77 0.82 8.37 0.083

(c) Patch Discriminator
PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

no patch 19.59 0.81 8.71 0.086
uncond. patch 19.60 0.81 8.70 0.086
our cond. patch 19.77 0.82 8.37 0.083

[7]. Specifically, for (2), we adopt a similar patch-based gar-
ment warping method with OpenPose serving as the corre-
spondence between the source and target image. According
to the quantitative comparison (Table 3(a)) and the visual
comparison (Fig.7 and Fig.8), the proposed DensePose-
based garment warping with TPS transformation has the
best performance. We hypothesize that the performance
gain comes from the 3D-human-geometry-aware Dense-
Pose estimation, which is especially useful for source-to-
target garment warping when the view change is drastic.
Multi-View Fusion Variants. We consider four variants:
(1) No multi-view inputs. The model just takes a single in-
put source image which has the closest pose to the target
pose in terms of DensePose [12] estimation. (2) Naı̈ve av-
erage. For the appearance feature f i

A of each input view,
the model simply averages all features. (3) Sequential com-
bination. For each view, we compute the visibility map
V i, which indicates the common region that is available
in both source and target image. To fuse {f i

A}, we first
rank all N views from the closest to the furthest to the tar-
get image. The fused appearance feature fA is a sequen-

tial combination of f1
A ◦ V 1, ..., fN

A ◦ V N , where 1, ..., N
is ranked from the closest to the furthest view. Finally, for
regions that are still not covered (i.e. not available in any
input view), we supplement with corresponding (inpainted)
regions of the closest view feature f1

A. (4) Our proposed
confidence-map-based multi-view appearance feature f i

A

fusion method (details in Section 3.2). As reported in Ta-
ble 3(b), the proposed confidence-map-based feature fusion
mechanism outperforms other variants. We hypothesize the
reason is that the mechanism considers the common regions
between each source and target image.
Conditional Patch Discriminator. We con-
sider three variants: (1) No patch discriminator.
(2) Unconditional patch discriminator with loss
Lpatch = E[− log(Dpatch(patch(ÎT ), patch(IT ))]. (3)
Our proposed conditional patch discriminator with loss
Lpatch = E[− log(Dpatch(patch(ÎT ), patch(IT ))|patch(IS)].
As reported in Table 3(c), the proposed conditional patch
discriminator outperforms other variants. Similar to
conditional generative adversarial networks, considering
the input IS leads to better image generation quality.
Summary. We present a novel method for human repos-
ing and virtual try-on from multi-view images. The ma-
jor novelty lies in the multi-view fusion mechanism and the
source-to-target warping mechanism in both UV and pixel
space. We also introduce a conditional patch-based dis-
criminator, which could be used for generative adversarial
networks in general. Experiments on the large-scale Deep-
Fashion dataset show that synthesizing from multi-view im-
ages leads to higher fidelity and better geometric details as
compared to the single-image approaches. Additionally, the
proposed method significantly outperforms state-of-the-art
methods, both visually and quantitatively.

For limitations, our method does not always synthesize
complicated textures well when all source poses are far
from the target. The virtual try-on is also a direct infer-
ence on the model trained on reposing only. Additional fine-
tuning for virtual try-on could lead to higher visual quality.
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