A Unified Model for Compressed Sensing MRI Across Undersampling Patterns

Armeet Jatyani*

Miguel Liu-Schiaffini

* equal contribution

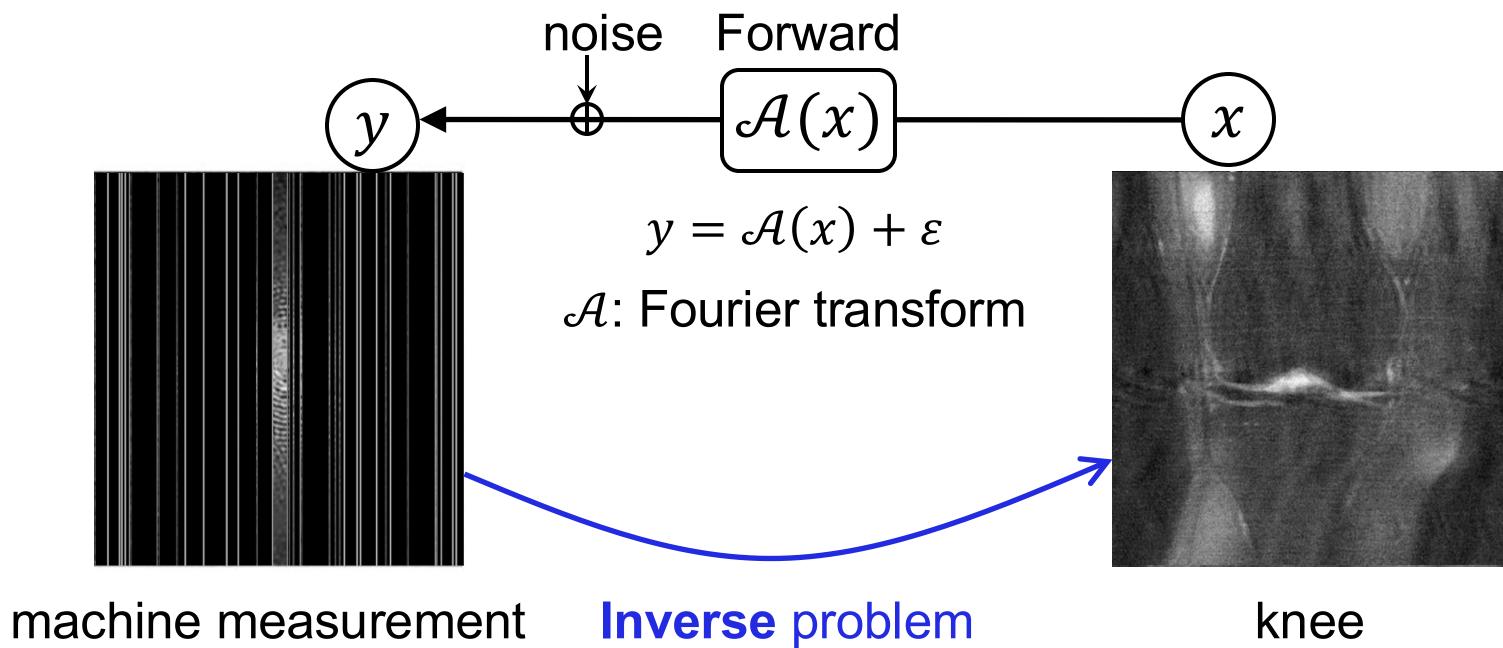
Jiayun Wang* Aditi Chandrashekar

Zihui Wu

Bahareh Tolooshams

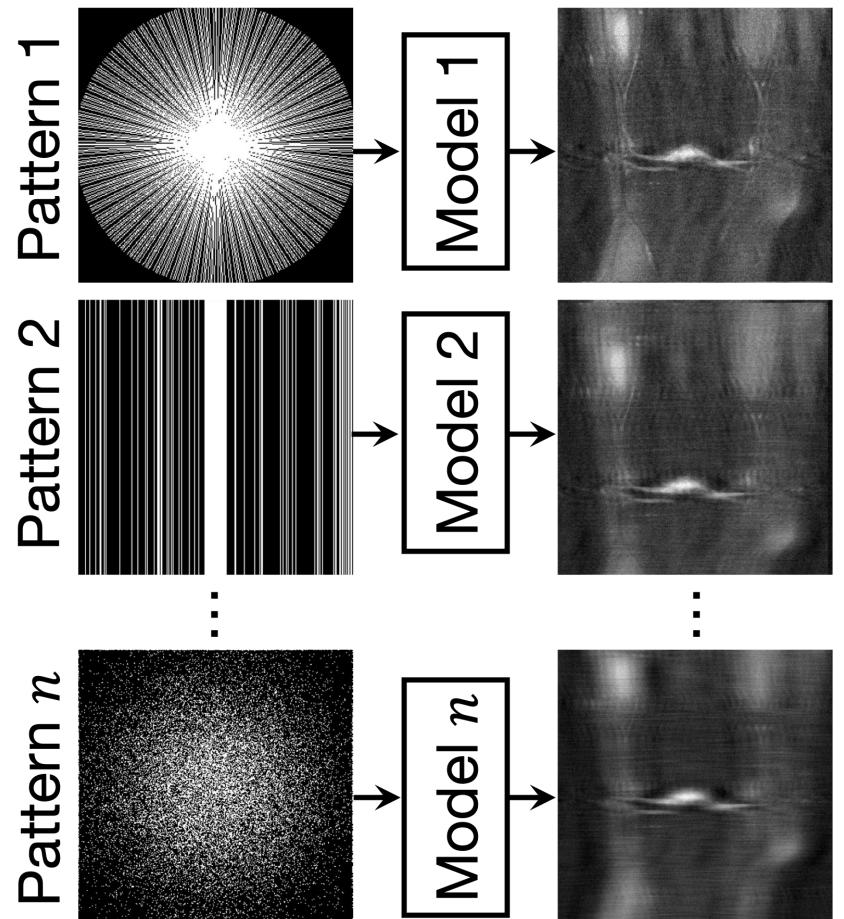
Anima Anandkumar

Task: MRI reconstruction



Neural network for MRI reconstruction

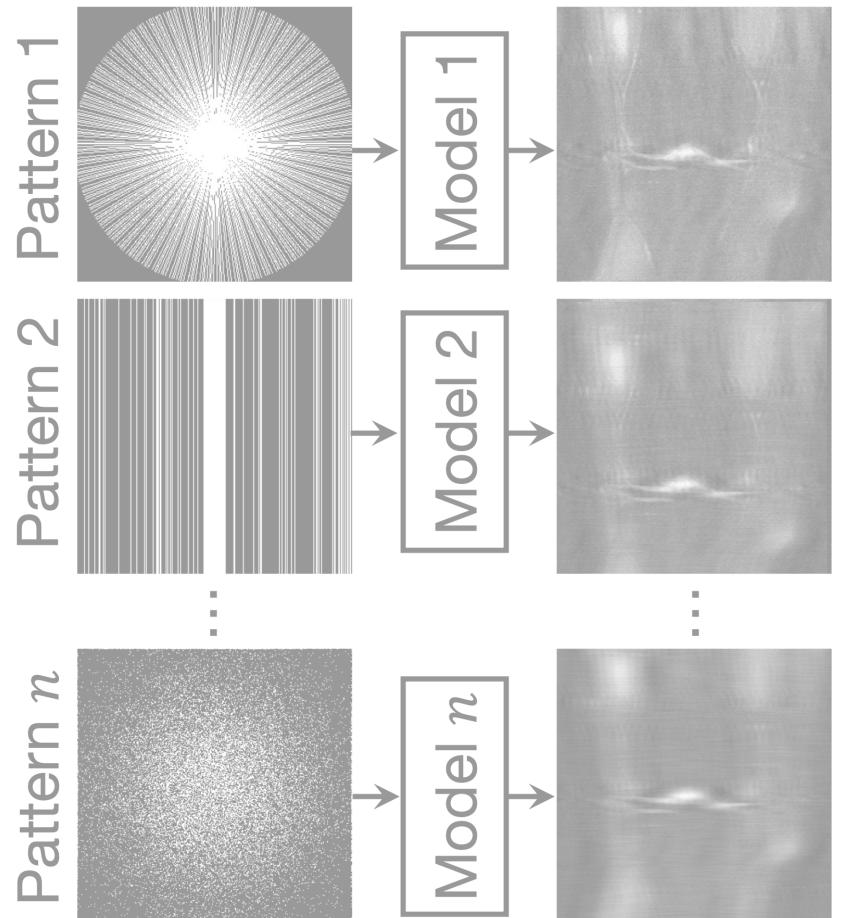
resolution-specific



- **Improves diagnostic performance** for brain, knee and pelvic MRI.¹
- **Robust** on unseen scanners.²
- Undersampling pattern changes in clinics...
- → Specific network needed for a specific measurement pattern.

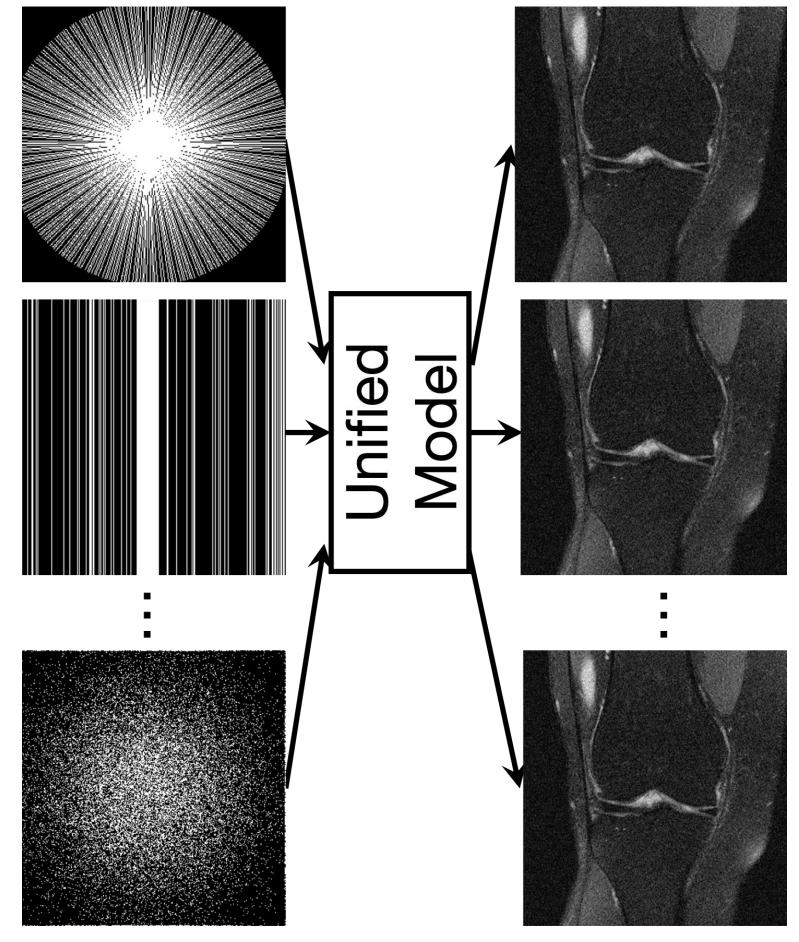
Neural network

resolution-specific



vs neural operator

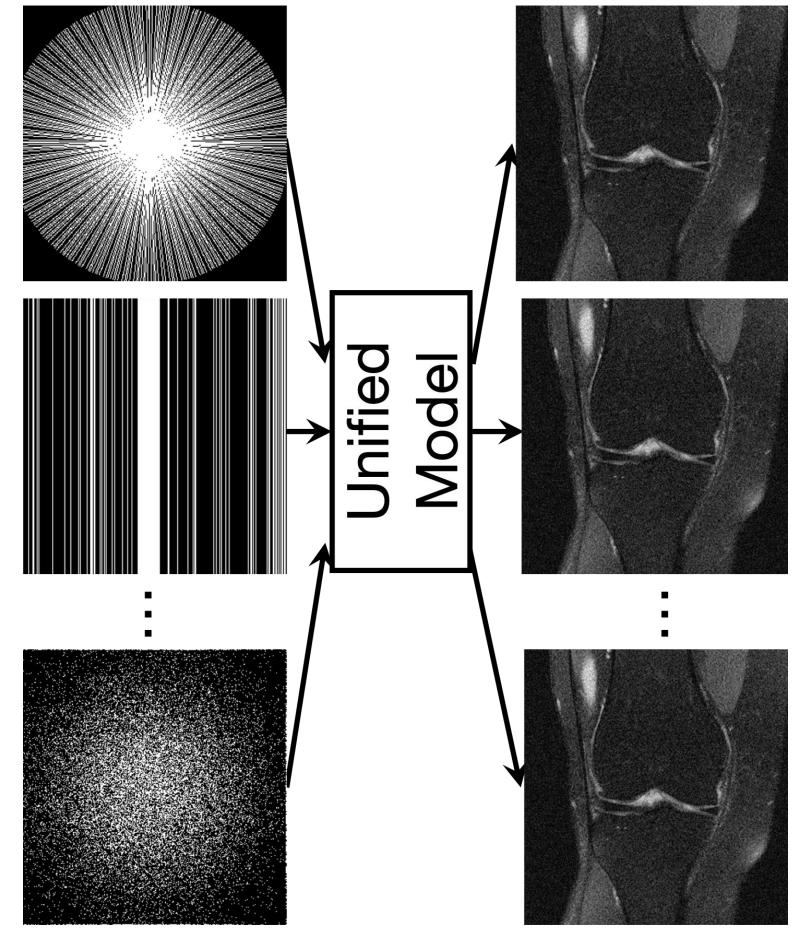
resolution-agnostic



[Wang* et al., CVPR '25]

Neural operator: resolution-agnostic architecture

resolution-agnostic



* Neural operator can approximate any continuous operator with nonlocality and nonlinearity. [Kovachki

Neural operator: deep learning architectures that learn mapping between function spaces (infinite-resolution)

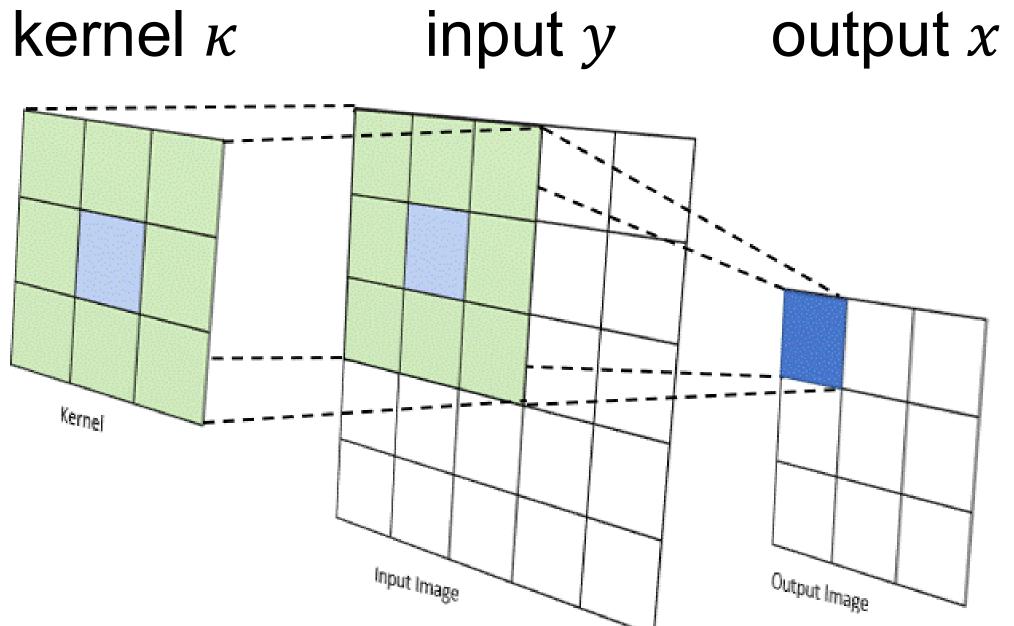
works for diffusion/iterative methods [Kerrigan et al,. AISTATS '24]

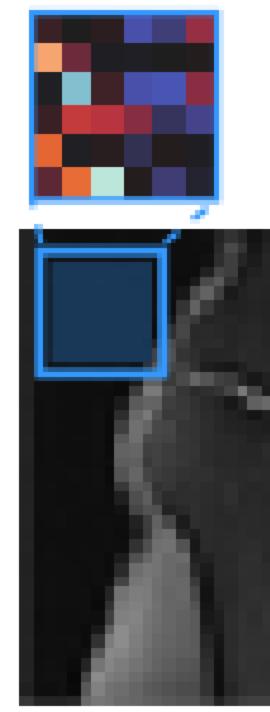
- Approximate* physics operator (learn in function space)
- Training with multi-resolution
- Inference on any-resolution

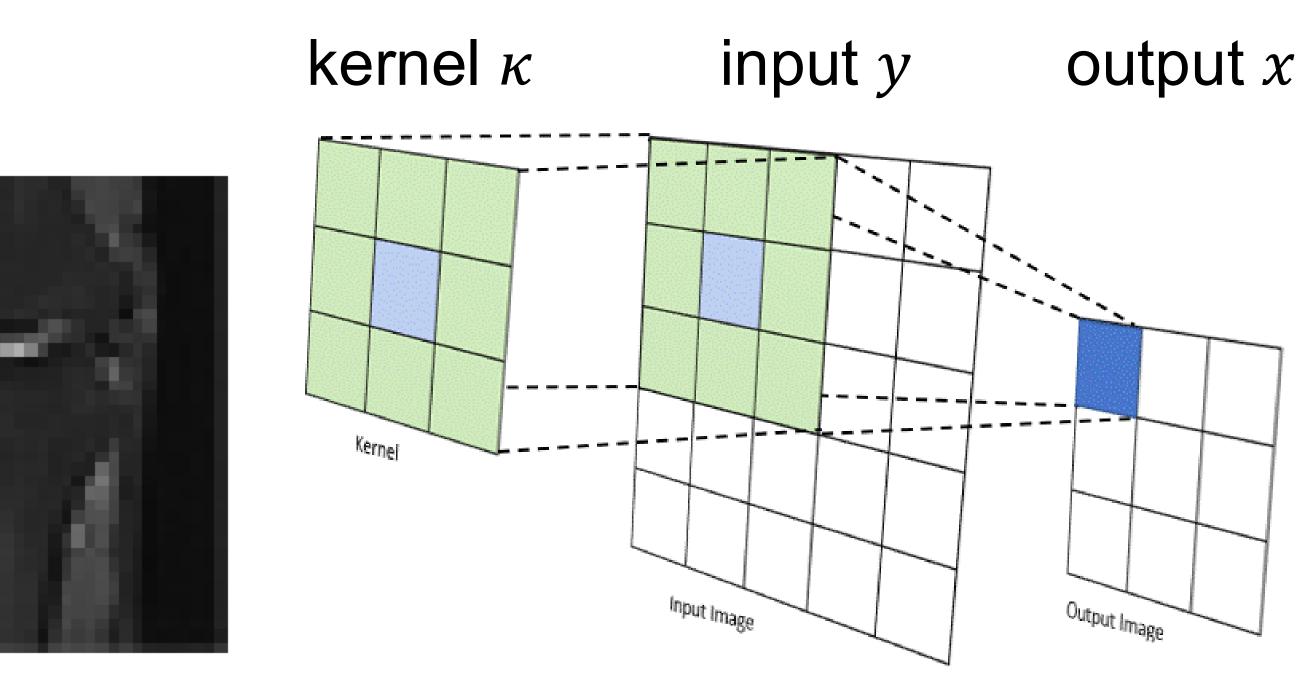
et al., JMLR '23] [Lanthaler et al,. arXiv '23] [Wang* et al., CVPR '25]

knee MRI

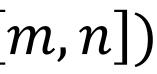
knee MRI

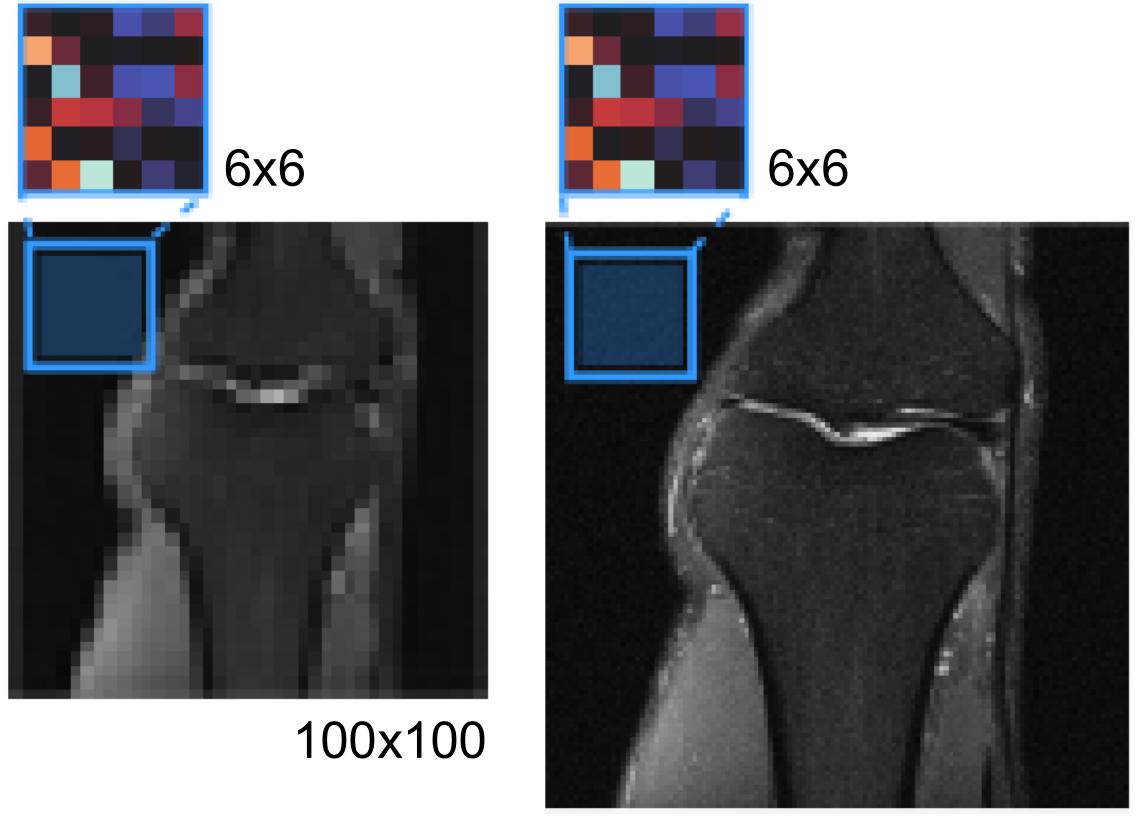






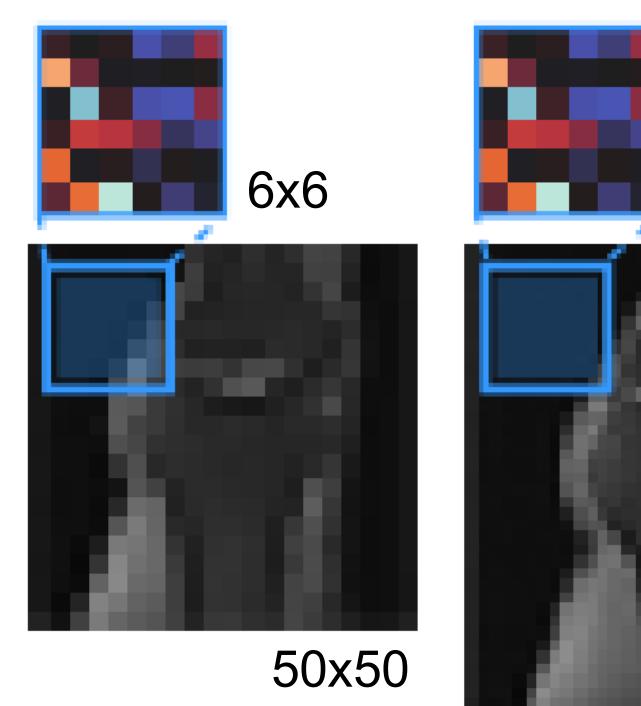
 $\operatorname{ReLU}\left(\sum_{i}\sum_{i}\kappa[i,j]\cdot y[m-i,n-j]\right) = \operatorname{ReLU}(x[m,n])$ \ J



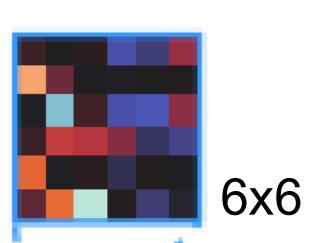


Receptive field: a restricted input area received by neuron

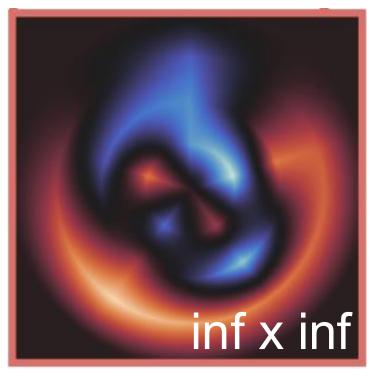
200x200

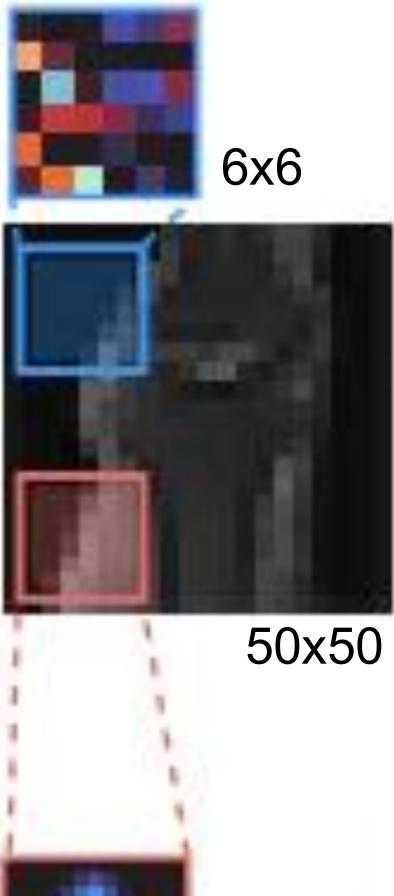


Convolutional neural **operator**

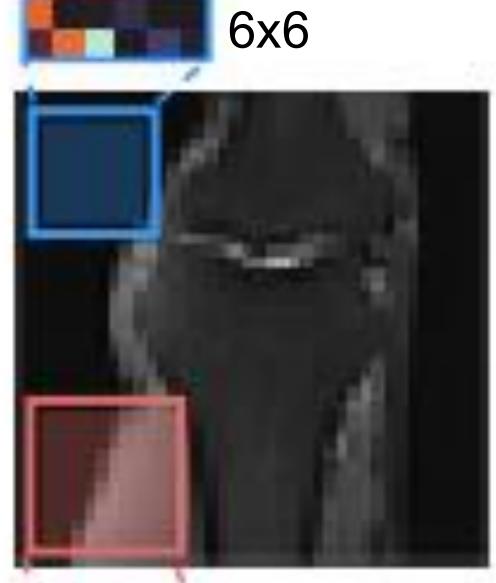


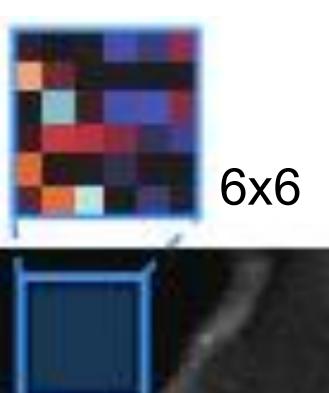
200x200





3x3

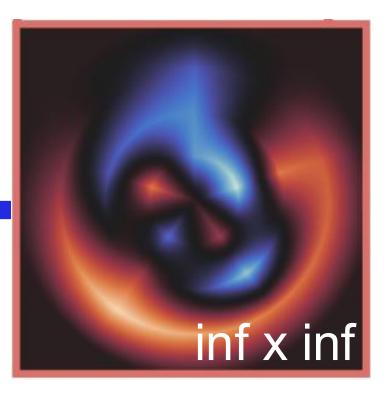


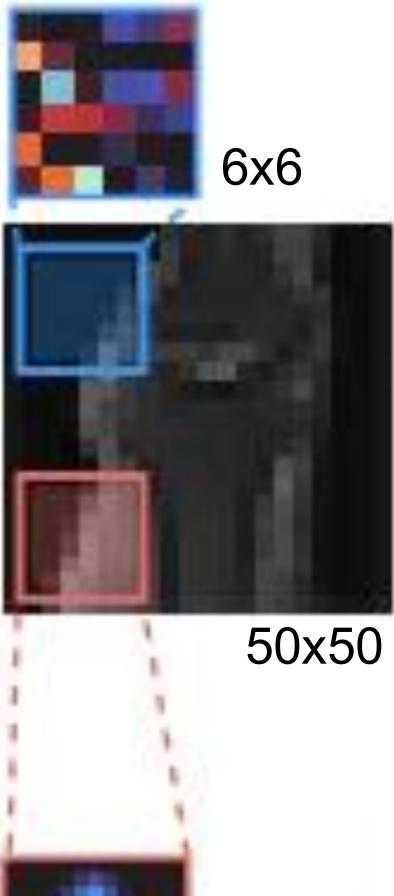


200x200

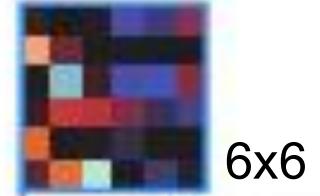
discretize

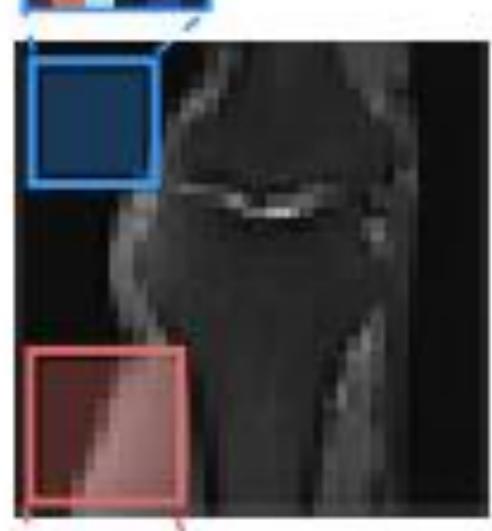
12x12





3x3









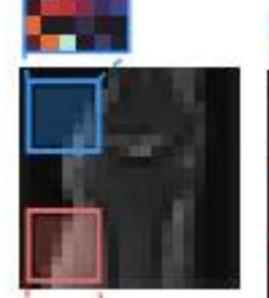
200x200

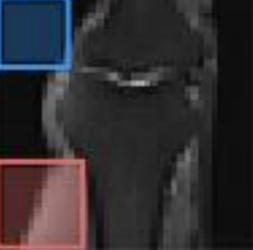
12x12

[Wang* et al., CVPR '25]

Resolution-agnostic architecture

Convolutional neural network

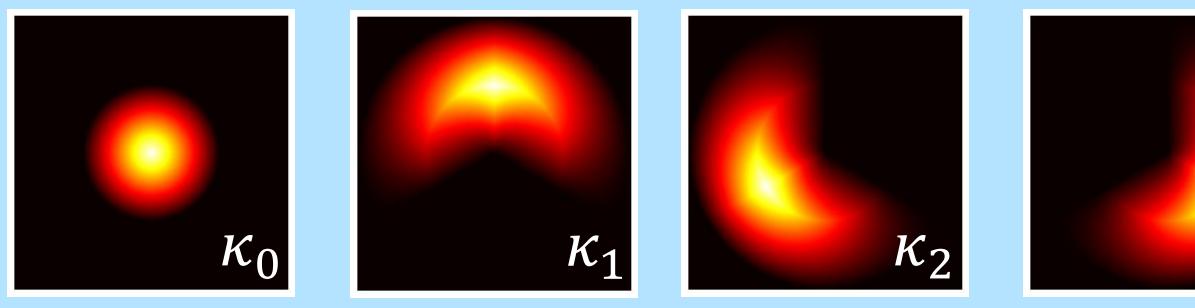




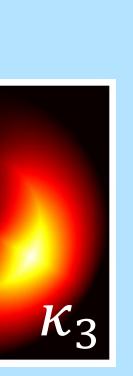
[Wang* et al., CVPR '25] [Ocampo et al., ICLR '23] Convolution kernel is a weighted sum of pre-defined basis functions \rightarrow learn strength parameter θ via gradient descent

$$\kappa = \sum_{i} \theta_{i} \kappa_{i}$$

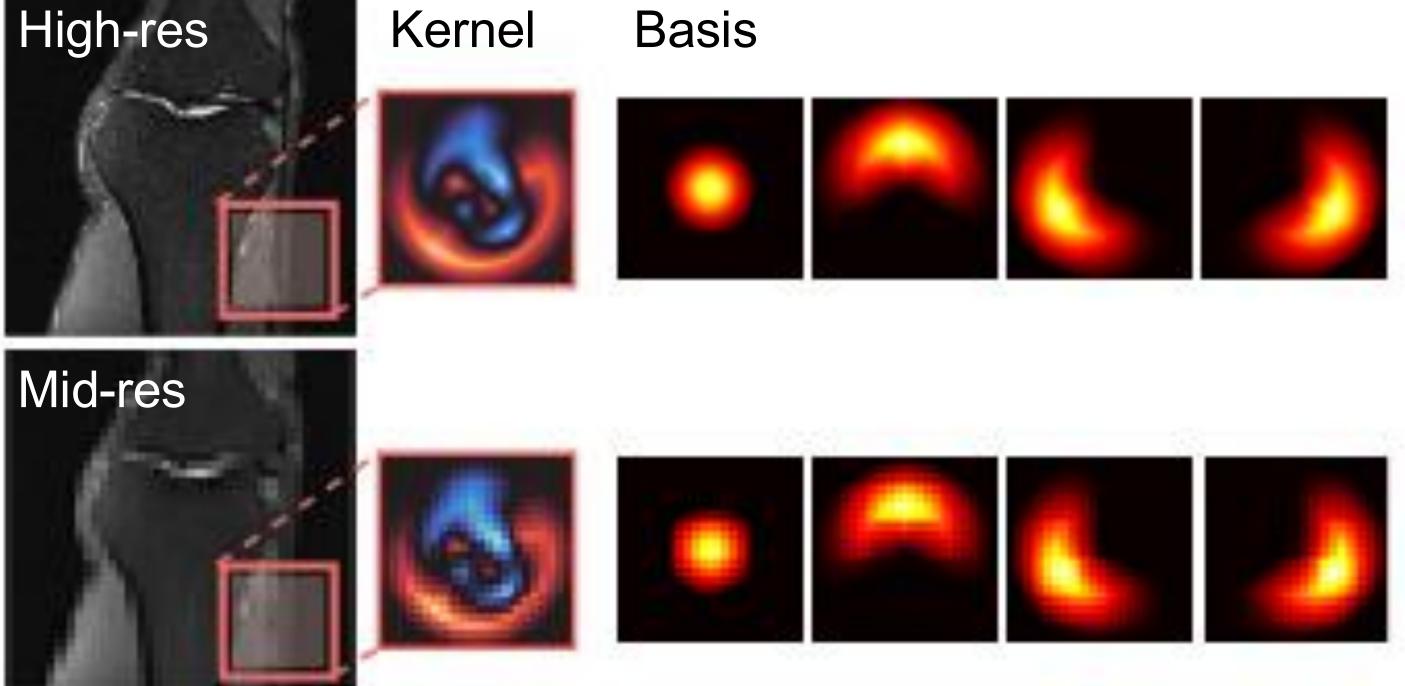
Basis functions (continuous, first 4)

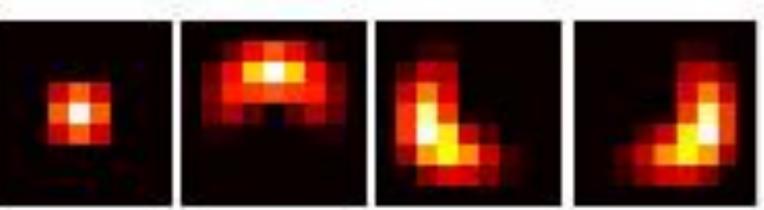


Other layers: same as CNNs



Resolution-agnostic architecture





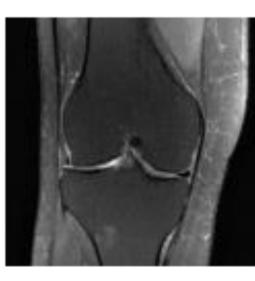
Learn kernel function (infinite-resolution)

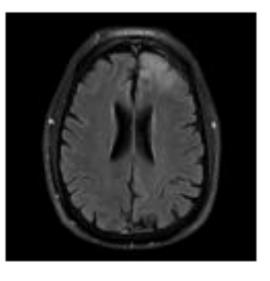
Train & Inference @ any discretization

* Basis satisfies linearly independence and spanning property [Wang* et al., CVPR '25]

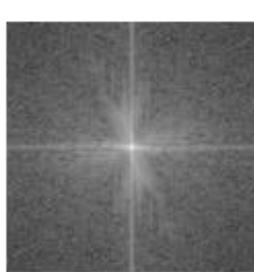
Network design: **U-Shaped architecture in image and frequency space**

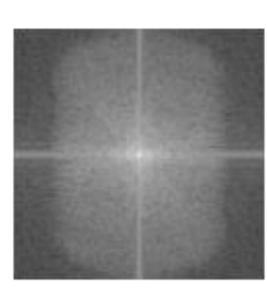
image space (local features)

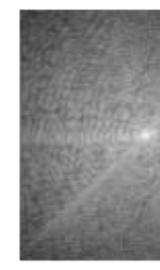




frequency space (global features)

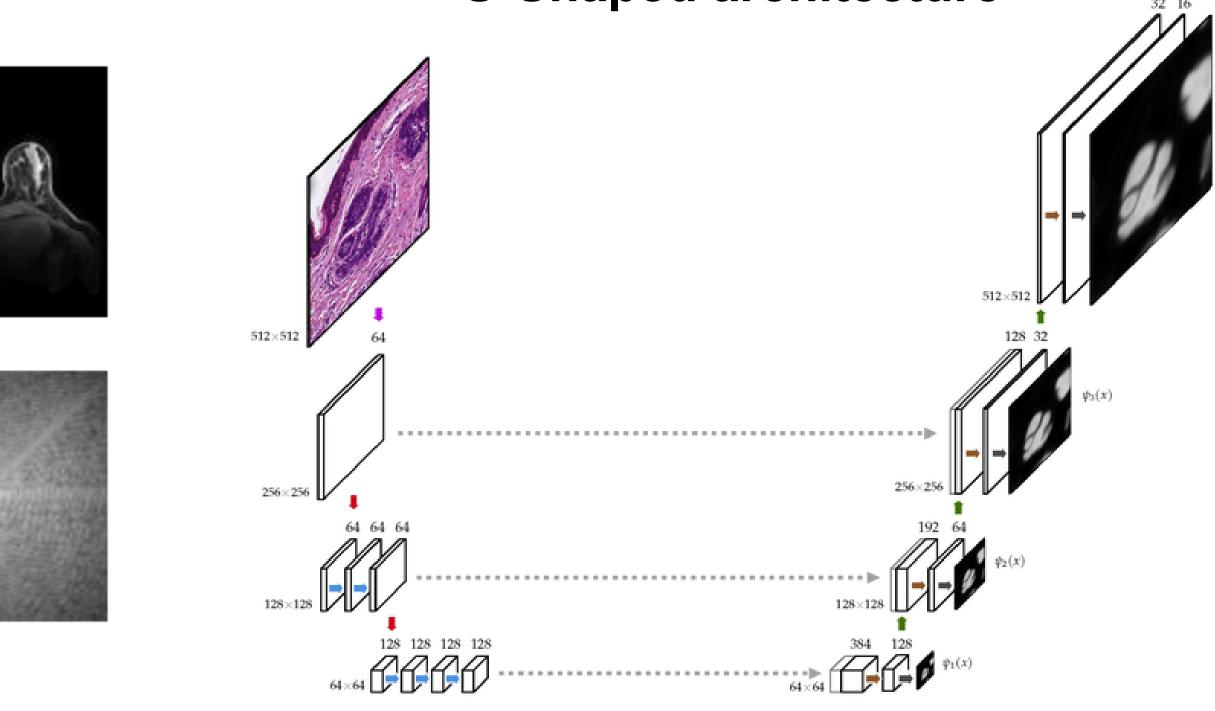






- Multi-scale features

U-Shaped architecture



Convolution: GPU-optimized Global and local features (duality)

Neural operator for image **Comparison to FNO (Fourier neural operator, popular PDE learner) Ours**: MRI dataset **FNO:** PDE dataset (Navier-

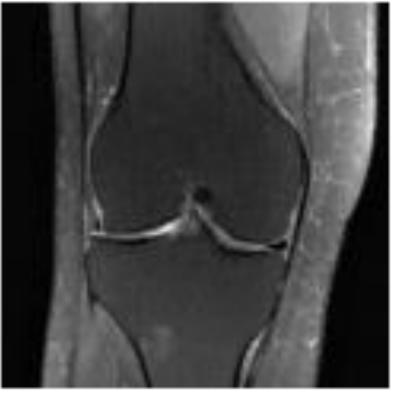
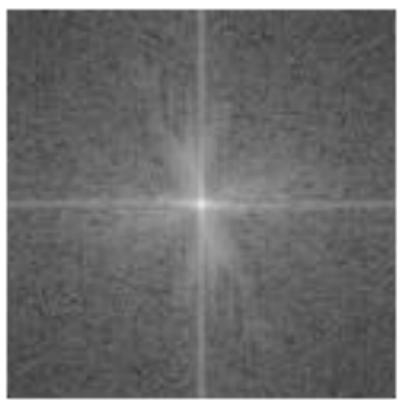
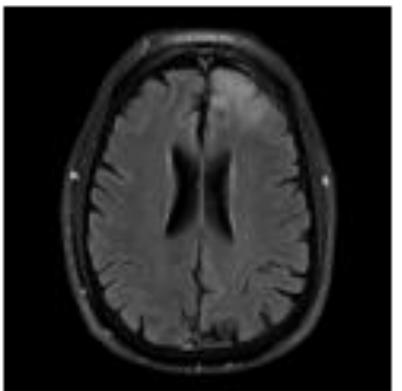
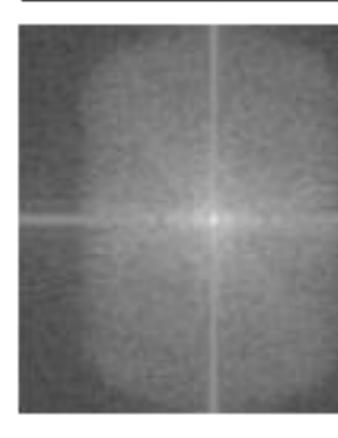


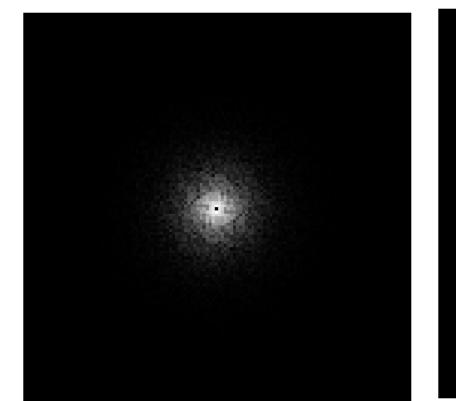
image space

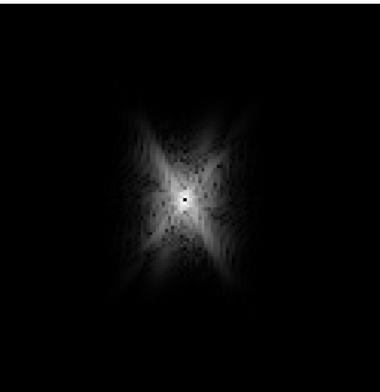




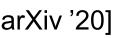


frequency space





[FNO. Li et al., arXiv '20]



Neural operator for image Comparison to FNO (Fourier neural operator, popular PDE learner) Ours: MRI dataset FNO: PDE dataset (Navier-

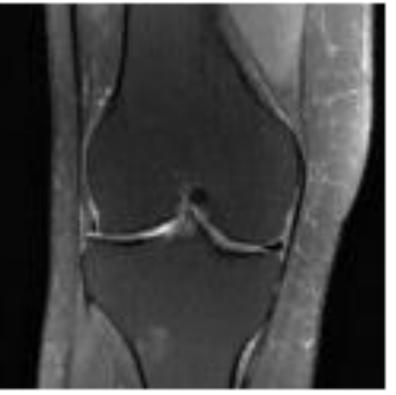
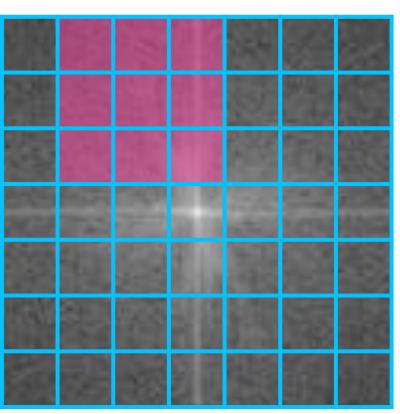
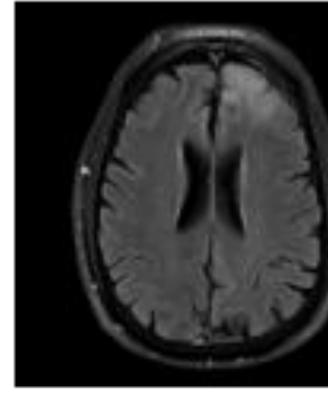
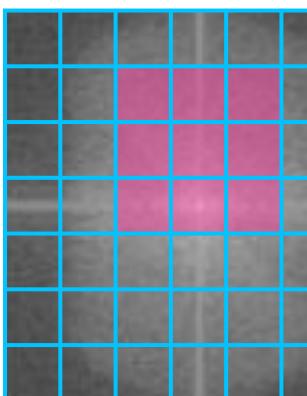


image space

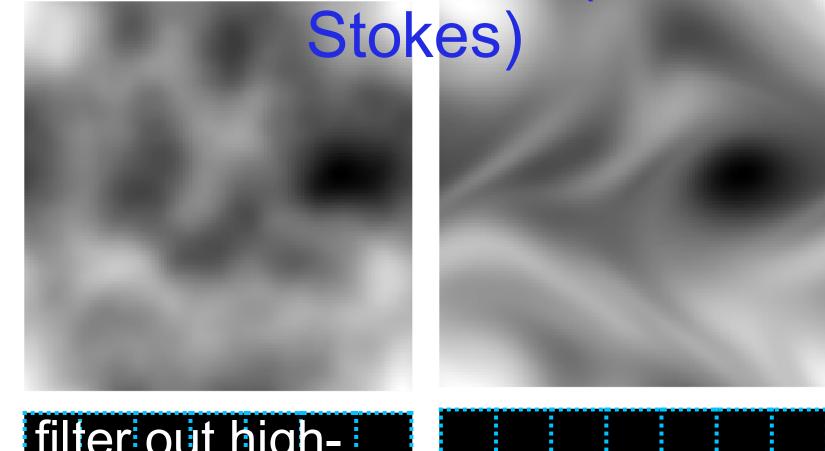
frequency space

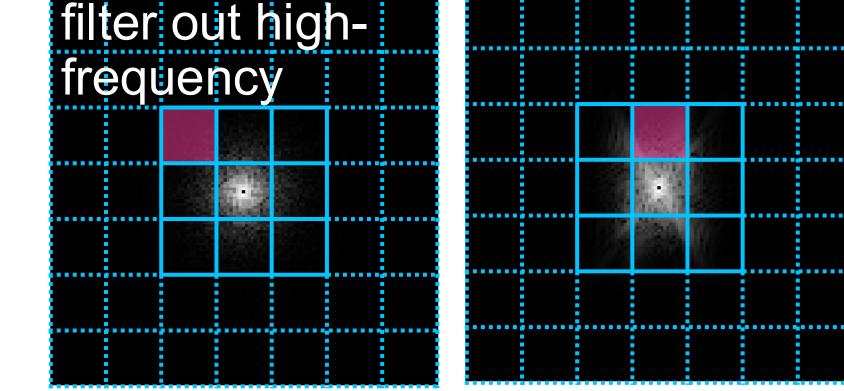






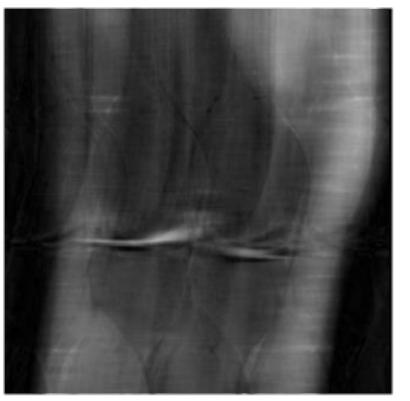
No frequency cutting
Local integral kernels (k × k)

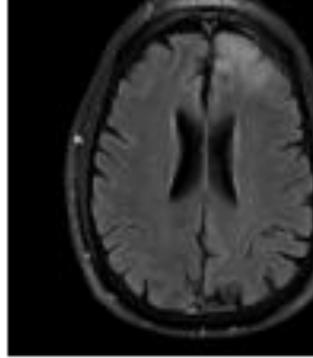


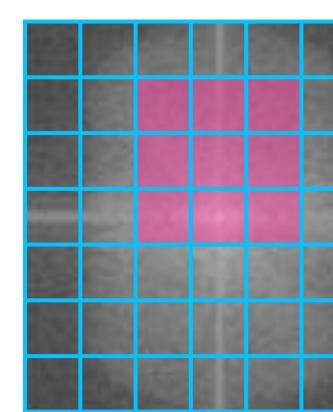


Frequency cutting
Point-wise operator (1 × 1)

Neural operator for image **Comparison to FNO (Fourier neural operator, popular PDE learner) Ours**: MRI dataset **FNO:** PDE dataset (Navier-Stokes



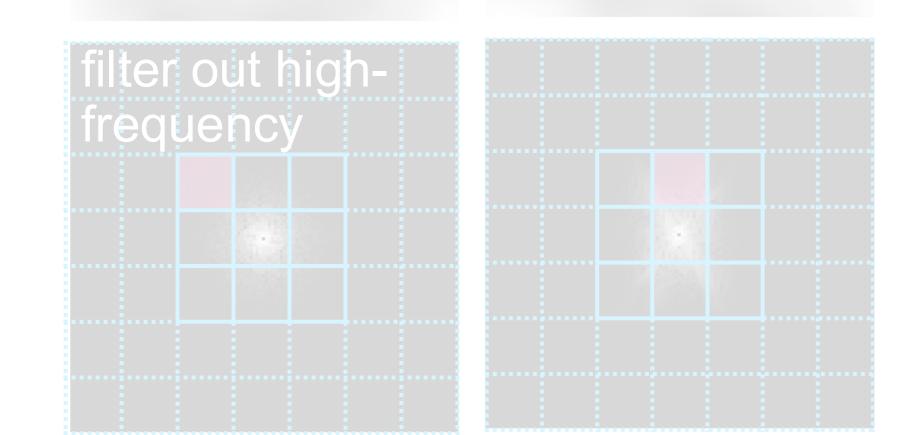




- No frequency cutting
- Local integral kernels $(k \times k)$

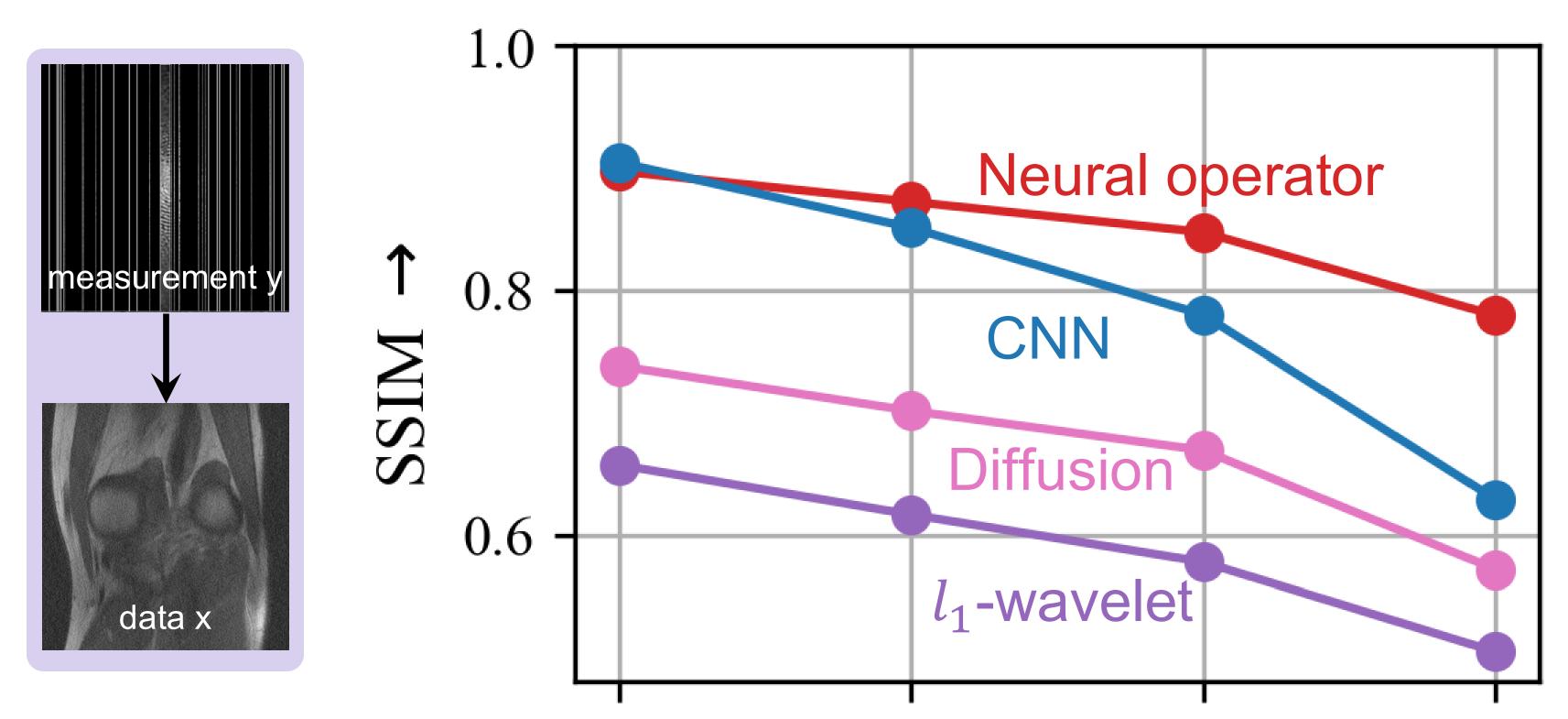
image space

frequency space

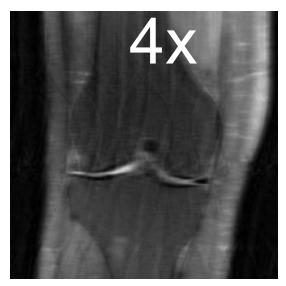


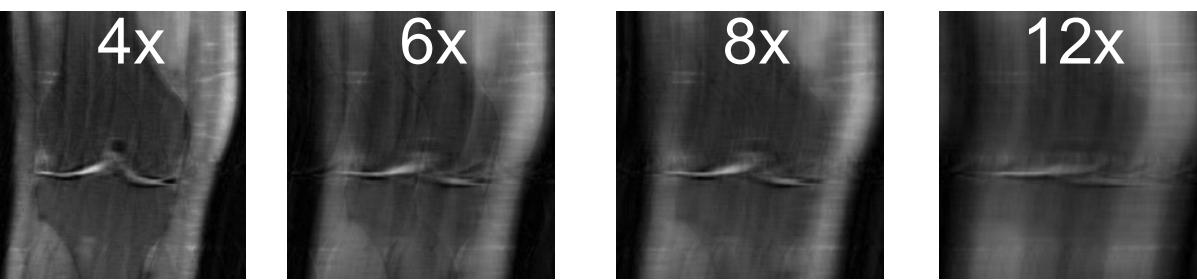
Frequency cutting Point-wise operator (1×1) [FNO. Li et al., arXiv '20]

Results: Undersampling inputs

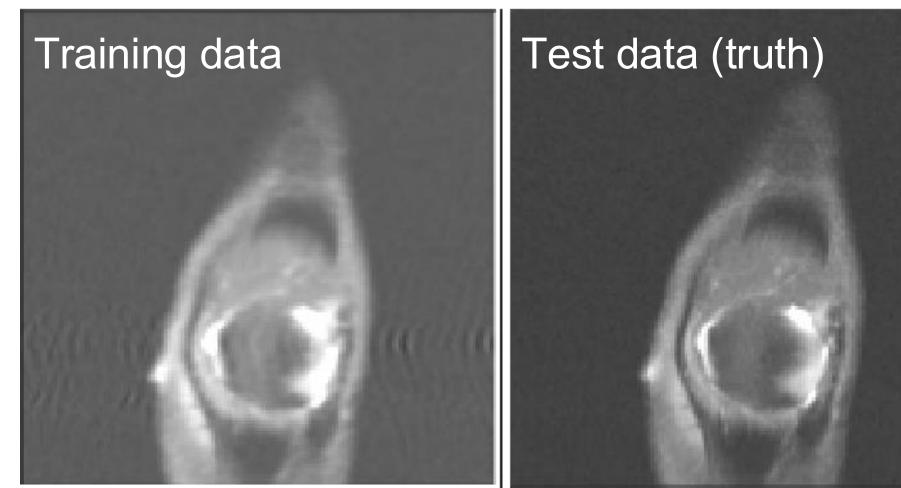


Undersampling rate

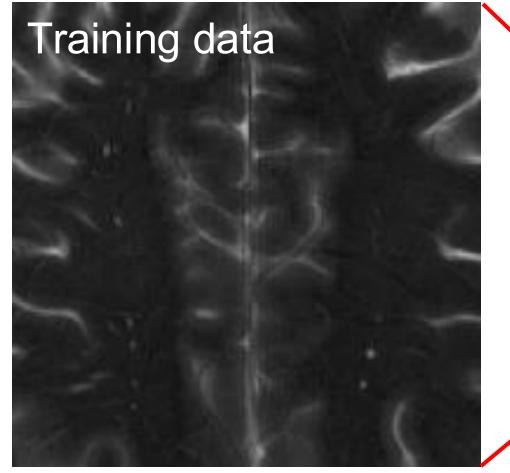


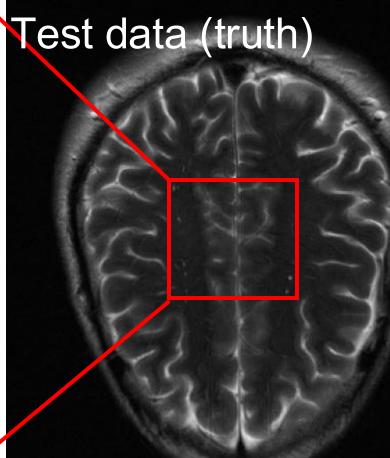


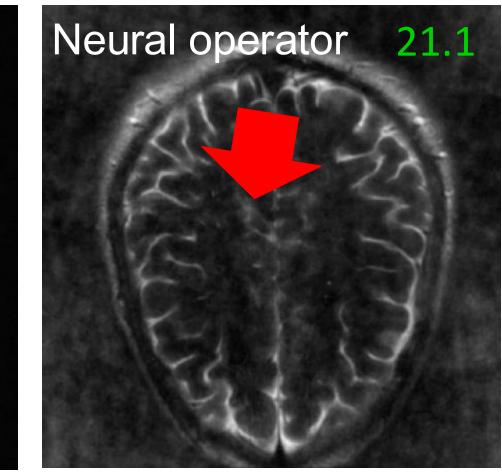
Results: Upsampling outputs (zero-shot) Knee: image super-resolution Metric: PSNR (↑)

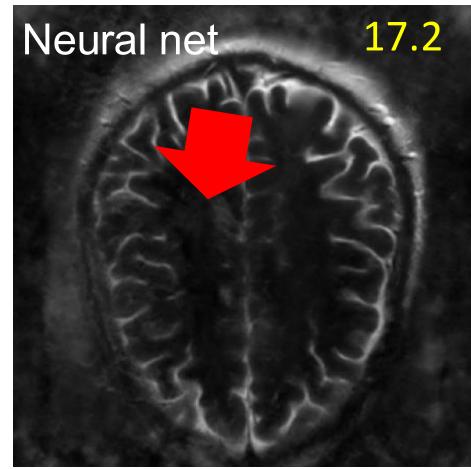


Brain: image extended field of view (frequency super-resolution)









A Unified Model for Compressed Sensing MRI Across Undersampling Patterns Thank you! Please come to our poster: #477 ExHall D, Sun Jun 15 (morning)

Paper/code/data:

