

Orthogonal Convolutional Neural Networks

Jiayun Wang

Yubei Chen

Rudrasis Chakraborty

Stella X. Yu

Filter similarity increases with depth

A typical conv layer has highly irregular spectrum

Kernel orthogonality is widely used as a regularization

Saxe et al. 2014

Dorobantu et al. 2016

Rodriguez et al. 2017

Bansal et al. 2018

. .

OCNN can do even better

Filter diversity improvement with OCNN

Convolution is an efficient matrix-vector multiplication

Convolution:

$$Y = K * X$$

Matrix-vector form:

$$K \to \mathcal{K}, Y = \mathcal{K}X$$

Convolution is an efficient matrix-vector multiplication

Convolution is an efficient matrix-vector multiplication

Orthogonal convolution or orthogonal kernel?

Convolution:

$$Y = K * X$$
kernel orthogonality: $KK^T = I$

Matrix-vector form:

$$K \rightarrow \mathcal{K} Y = \mathcal{K} X$$
conv orthogonality: $\mathcal{K} \mathcal{K}^T = I$

Orthogonal convolution or orthogonal kernel?

Convolution:

$$Y = K * X$$
kernel orthogonality: $KK^T = I$

Matrix-vector form:

$$K \rightarrow \cancel{\mathcal{K}} Y = \cancel{\mathcal{K}} X$$
 conv orthogonality: $\mathcal{K}\mathcal{K}^T = I$

$$\mathcal{K}\mathcal{K}^T = I \implies KK^T = I$$

 $\mathcal{K}\mathcal{K}^T = I \not= KK^T = I$

A fast algorithm for orthogonal convolution

- Kernel Orthogonality:

$$\begin{cases} \operatorname{Conv}(K, K, \operatorname{padding} = 0) = I_{r0} \\ \operatorname{Conv}(K^T, K^T, \operatorname{padding} = 0) = I_{c0} \end{cases}$$

- Convolutional Orthogonality:

$$Conv(K, K, padding = P, stride = S) = I_{r0}$$

Same # parameters and test time, only 9% more training time

Universal improvements

Task		Metric	Gain
Image Classificatio n	CIFAR100	classification accuracy	3%
	ImageNet	classification accuracy	1%
	semi-supervised learning	classification accuracy	3%
Feature Quality	ine-grained image retrieval	kNN classification accuracy	3%
	unsupervised image inpainting	PSNR	4.3
	image generation	FID	1.3
	deep metric learning	NMI	1.2
Robustness	black box attack	attack time	7x less

Thanks

