

Pose-Aware Self-Supervised Learning with Viewpoint Trajectory Regularization Yubei Chen Stella X. Yu Jiayun Wang

On job market! peterw@caltech.edu

A robot moves around in the environment and encounters a new object

<u>No labels \rightarrow Self-supervised learning (SSL)</u> Adjacent images of the same object from a smooth viewpoint trajectory

Video credit: Common objects in 3d. ICCV 2021

Existing SSL: car

Expected:

- Car heading towards the camera
- At danger!

Recognition needs to understand both aspects:

- What is the object
- *How* is it presented

Existing SSL: car

Expected:

- Car heading towards the camera

Existing SSL: car

- Expected
- Car heading away from the camera
- No danger

Learn disentangled semantic-pose representation with SSL?

* Image embedding projected to 2D

Existing SSL

VICReg, SimCLR, SimSiam, MoCo,...

- Invariant representation
- Object identity only

Ours

- Pose-aware representation
- Object identity + pose

Existing SSL

VICReg, SimCLR, SimSiam, MoCo,...

- Invariant representation
- Object Why pose-aware SSL is hard?

 Pose-aware representation Object identity + pose • No benchmark \rightarrow we propose a benchmark No method to prevent representation collapse \rightarrow we propose trajectory regularization loss

* Synthetic data from ShapeNet

Training data: Image triplets with small pose changes No semantic or pose labels.

Benchmark: Data Configuration

13 in-domain

Benchmark: Data Configuration

13 in-domain & 20 out-of-domain semantic categories

Benchmark: Data Configuration

in-domain & out-of-domain pose

Benchmark: Tasks

- Semantic classification
- Absolute pose \rightarrow how SSL learns global pose from local adjacent pose
- Relative pose \rightarrow how SSL generalizes to OOD class/pose
 - Category-specific pose free
 - Generalize to open categories

SSL Training: Invariance

Example: VICReg

Augmentations:

- Random crops
- Color jittering
- Gaussian Blur

VICReg: Variance-invariance-covariance regularization for self-supervised learning. ICLR 2022

SSL Training: Trajectory Regularization

SSL Training: Trajectory Regularization

Line up 3 embeddings via

Invariant Learning

Final loss is a combination: $\mathcal{L} = \mathcal{L}_{Sem}(\mathbf{z}_{T_1}, \mathbf{z}_{T_2}) + \lambda \mathcal{L}_{traj}(\mathbf{z}_L, \mathbf{z}_C, \mathbf{z}_R)$

After SSL Training: Probing

- Invariant Leuseirepresentation forectory Regularization

 - encoder \widehat{X}_R

 \mathbf{Z}_R

Final loss is a combination: $\mathcal{L} = \mathcal{L}_{sem}(\mathbf{z}_{T_1}, \mathbf{z}_{T_2}) + \lambda \mathcal{L}_{traj}(\mathbf{z}_L, \mathbf{z}_C, \mathbf{z}_R)$

- In-domain data
 - Trajectory regularization helps
 - SSL close to supervised

- In-domain data
 - Trajectory regularization helps
 - SSL close to supervised
- Out-of-domain data
 - Trajectory regularization helps
 - SSL generalizes better than supervised

- Trajectory regularization helps
- - Trajectory regularization helps
 - SSL generalizes better than supervised

Direct Evaluation on Real Data

Rotating car dataset CARVANA

Visualizing Representation

VICReg

VICReg +trajectory regularization

VICReg: Variance-invariance-covariance regularization for self-supervised learning. ICLR 2022

Visualizing Representation

Multi-class representation

Visualizing Representation

Multi-class representation

Emergent pose-semantic representation without labels!

Single-class representation grouped by pose (aero)

Pose-Aware Self-Supervised Learning with Viewpoint Trajectory Regularization

Thank you! Please come to our poster: #256 Paper/code/data:

