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I develop machine learning (ML) and computer vision (CV) methods to address data insufficiency and model in-
terpretability challenges. My techniques leverage physics simulations, reduce human supervision by learning from
imbalanced data, and enhance interpretability through multi-level structure-aware representations. My goal is to in-
corporate domain knowledge into data-driven and interpretable models that not only perform well but also facilitate
scientific discovery and provide insights for scientists and stakeholders.

Machine learning (ML) and computer vision (CV), specific forms of artificial intelligence, are gradually
transforming various fields thanks to their applicability to numerous real-world problems. Notably, ML
and CV have made tremendous developments in healthcare and is getting increasingly popular. By 2023,
there are more than 23,000 articles on AI for healthcare on PubMed [1]. Nonetheless, despite the rapid in-
crease in research papers, the deployment of MLCV models in real-world settings such as clinics, remains
slow, particularly for high-stakes tasks. Several challenges impede the real-world application of MLCV
models: 1) Limited and Imperfect Data: Certain scenarios, like under-studied diseases or technological
constraints of biomedical devices, suffer from limited data availability. Annotating medical data is costly.
Since training AI models relies on high-quality data [2], the lack of such data can lead to model failures. 2)
Model Interpretability: Many MLCV models operate as black boxes, making it difficult for practitioners
to assess the trustworthiness of their predictions.

I develop ML and CV methods that mitigate data/annotation insufficiency and low model interpretability
issues. 1) Learning from Physics Simulations: In cases where real data is unavailable, we leverage physics
models and simulated data to develop ML. Our model trained on simulated data can effectively work on
real organs. We proposed the first method that reconstructs lung histological structure with commercial
ultrasound device. We also developed resolution-invariant methods that enable real-time photoacoustic
imaging of the breast. 2) Reducing Human Supervision: In cases where large-scale real data is available,
significant human effort is needed to curate and annotate the data for training MLCV models. We develop
methods to reduce human supervision by learning from imbalanced data and training models without
annotations. Our approach has demonstrated superior performance with minimal human supervision
in wildlife recognition and ocular disease diagnosis. 3) Enhancing Model Interpretability: We improve
model interpretability by learning multi-level structure-aware representations. Our models can explain
the reasoning behind diagnoses of ophthalmic diseases and predictions of surgeon behaviors.

Through close collaboration with scientists and practitioners, my research aims to deeply integrate ML
model development with real-world applications. By incorporating domain knowledge and data from
experts, I create interpretable models that provide insights to facilitate scientific discovery.

Learning from Physics Simulation. Physics simulations are crucial in solving many complex scientific
problems, especially when real data is limited but physical laws are well-understood. By modeling and
simulation, researchers can understand intricate processes better, predict outcomes, and design more
effective interventions across various scientific domains Medical imaging, one notable application, solves
the inverse problem and creates visual representations of the interior of the body from observations of the
medical device. To train MLCV models for medical imaging, a large-scale dataset of high-quality ground-
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Figure 1: I develop interpretable ML and CV methods that learn from physics simulation, imbalanced and label-free
data. In collaboration with scientists, our models show robust performance and extract insights for many applications.
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truth images is necessary (e.g. knee reconstruction in MRI [3]). However, acquiring such images due to the
intricate nature of biological systems and the limitations of current imaging technologies. For example,
lung ultrasound imaging (LUS) is challenging due to the complexity of the wave propagation physics in
the lung which exhibits complicated tissue-air structures. It is not possible to image lung histology in
vivo, which developing data-driven models intractable.

We are changing the landscape of LUS and diagnosis by proposing the first method that reconstructs lung
histology from ultrasound sensory data [4]. Since it is infeasible to obtain lung histopathology maps using
in-vivo ultrasound, we collaborate with biophysicists to simulate ultrasound propagation in the lung. By
leveraging these simulations, we develop inverse imaging techniques that, although trained on simulated
data, demonstrate robust performance on real lungs.

Unlike other MLCV models which only operate on a specific resolution of data, our model is resolution-
invariant and maintains consistent performance across varying resolutions of input measurements and
output reconstructions. A direct application is compressed sensing, where our model can reconstruct
high-quality images from sub-sampled measurements. Specifically in 3D photoacoustic imaging, we
demonstrate the capability to reduce input measurement size and speed up the measurement time by
up to 10x while maintaining minimal loss in reconstruction performance [5]. Our model enables real-time
3D breast imaging by enhancing temporal resolution. We also achieve high temporal-resolution functional
ultrasound for brain imaging [6] with the same model design.

Learning from Imbalanced Data. A more suitable case for MLCV model development is when abundant
data is available. However, this abundance of real-world data often comes with the challenge of imbal-
anced or long-tailed distributions. Imbalanced data would increase the bias towards the majority, hurt
the performance of the minority (e.g. not detecting rare diseases), and even make the model collapse [2].
Rather than using resource-consuming data curation which needs heavy human supervision, we reduce
supervision by proposing methods that achieve balanced performance for both the majority and minority.

We for the first time formally studied Open Long-Tailed Recognition for visual data [7], [8]. We formally
define the long-tailed recognition task, develop benchmark datasets and evaluation protocols, as well
as a novel representation learning method that outperforms state-of-the-art approaches. Our insight is
that rather than learning from imbalanced labels, it is more appropriate to learn structure-aware represen-
tations from the data, which are regularized, shared across the dataset and not suffering the imbalanced
issue. We apply the proposed framework to real-world applications including wildlife recognition [9] and
ocular disease diagnosis [10] with balanced performance for both common and less-common classes.

Learning without Annotations. The abundance of real-world data also comes with the need for exten-
sive human supervision and efforts for annotation. We adopt two methods to address the challenge: 1)
We directly learn from unlabeled data, which leverages unsupervised learning to extract useful features
without manual labeling. We pioneer to propose the first method that discovers joint object identity and
pose from unlabeled images [11]. 2) Learning to distill and transfer knowledge from existing models also
reduces the need of extensive annotations. Our method enables humans to collaboratively develop CVML
models and shows strong applicability to predicting ophthalmic diseases [12] and surgery feedback [13].

Improving Interpretability. Interpretable ML models are pivotal in many medical and scientific appli-
cations for improving model transparency and trustworthiness. We leverage multi-level structure-aware
representations for the morphology of meibomian glands [10], [14], use them to interpret the disease
diagnosis ML model and identify the most important indicators for diagnoses [15]–[17].

Future Directions. My current research focuses primarily on single objects or localized views, but ex-
panding to more complex scenarios involving more complicated systems is of significant interest. Future
work will aim to develop geometry-aware representations for multi-object scenes, enabling more compre-
hensive and accurate modeling of intricate biological structures. Additionally, integrating multi-modality
data, such as video and sound, will enrich the data landscape, providing a more holistic view of the stud-
ied phenomena [13]. Improving the efficiency of ML models to facilitate their practical deployment is also
a key objective. Notably, we have developed lean and efficient MLCV models by preserving data struc-
tures such as orthogonality and recurrence [18], [19]. These advancements will enhance the applicability
and performance of ML and CV technologies in real-world healthcare settings.
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