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Motivation: Compressed Sensing PACT

* Consistent reconstruction from undersample measurement
* Reduce scan time
* Low-cost PACT system (with fewer transducers)
* Limited angle
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The Forward and Inverse Problem

°* The imaging process be considered as solving the following Helmholtz equation

wave number

V2¥(x) + k*P(x) = jwP(x)

wave function source

* Forward: Source to observed RF
P(x) - ¥(x)

Numerically, the forward model is W(x) = AP(x), A is the forward operator

* Inverse: Observed RF to reconstruct source
Y(x) - P(x)

Goal: learn an inverse operator with ML
which reconstructs high-quality image P(x)

Inverse operator A* is computation-expensive



Conventional Solver and ML

* Back projection solver (1 step)
A"
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Conventional Solver and ML

* Back projection solver (1 step)
A"
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* |terative solver (5-10 steps)

- | o
P = argprzr%)mHAP U||“ 4+ R(P),

where A: RY - CM, Pc RN, and ¥ € CM, with N = 200 x 200 x 160 and M being
the number of transducers multiplied by the number of frequency modes (149). R(P)
is a regularizer like T'V regularization.

A can be as large as 15kx6k (10s scan)

* ML learns the inverse operator to reconstruct source with parameter ©
P = fo(¥)



Methods - Overview

Helmholtz Equation

wave number

VW (x) + k¥ (x) = jwP(x)

wave function source
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Methods - Geometry-Informed Network

* RF signal is 3D (6, ¢, t)
* \We use spherical coordinates to simplify computation
* The neural operator framework is resolution-agnostic

10s scan = 400 vertical lines
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convolution
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The framework learns in the function space and is resolution-invariant



Methods - Geometry-Informed Network

* RF signal is 3D (6, ¢, t)
* \We use spherical coordinates to simplify computation
* The neural operator framework is resolution-agnostic

10s scan = 400 vertical lines
0.5s scan = 20 lines (visualization)
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Methods - Test-Time Optimization

Solver Optimized on Neural Representations

* After training the ML model, we can use test-time optimization to further improve
reconstruction performance for a sample

min||AP(x) — LP(x)H2 = meinIIAfg (P(x)) —¥)ll2

* Compared to PDE loss: PDE loss is optimized for all training images

Test time optimization with RF SNR=3dB
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avg. test acc. (%)

Simulation Results (3k)
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metric: cosine similarity

visualization: maximum projection on z-plane

1k results pending
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Reducing Sim and Real Gap (1k)

Same object, simulated RF and real RF
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Experiments: Phantom Data

System Phantom Point sources

1.0 inch (25.4 mm
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* Model first trained on 10k simulated samples
* Fine-tuned on one phantom combined with point source

Fine-tune
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Experiments: Phantom Data

Conventional solver: changing hyperparameter removes noise and structures * sample 3x on elevation
Phantom1 Solver TVrate 0.01 0.08 0.45 0.6

0.3

ground truth

6x less scan time
uniform subsample
on azimuth

10x less scan time
uniform subsample
on azimuth

Limited angle:
1/3 subsample
on azimuth




Experiments: Phantom Data

Phantom 2 Solver TV rat 0.01 0.08 : : : ground truth

10x less scan time
uniform subsample
on azimuth

Limited angle:
1/3 subsample
on azimuth
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Summary

* Conventional solver needs to be tuned.
Tuning removes noise and accurate
phantom reconstruction simultaneously.

« ML has accurate reconstruction with
less noise.

* Solvers needs to be tuned for individual » ML does not need individual-tuning
phantom and individual setting.

* Compression rate: on real phantom, ML can reduce the full 10s scan time to 1s, or
use 1/3 limited angle (120°). (Note the phantom structures are simpler.)
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