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Setup

High-speed 3D PACT (2021)

Hardware: 1k System (w/ rotated arcs)

https://arxiv.org/abs/2306.14471


Motivation: Compressed Sensing PACT
• Consistent reconstruction from undersample measurement
• Reduce scan time
• Low-cost PACT system (with fewer transducers)
• Limited angle
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The Forward and Inverse Problem
• The imaging process be considered as solving the following Helmholtz equation
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Goal: learn an inverse operator with ML
          which reconstructs high-quality image 𝑃(𝑥)

Inverse operator A* is computation-expensive



Conventional Solver and ML
• Back projection solver (1 step)

!𝑃 = 𝐴∗Ψ
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Conventional Solver and ML
• Back projection solver (1 step)

!𝑃 = 𝐴∗Ψ
• Iterative solver (5-10 steps)

• ML learns the inverse operator to reconstruct source with parameter Θ
!𝑃 = 𝑓"(Ψ)

7

A can be as large as 15k×6k (10s scan)
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• RF signal is 3D (𝜃, 𝜙, 𝑡)
• We use spherical coordinates to simplify computation
• The neural operator framework is resolution-agnostic

Methods – Geometry-Informed Network
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RF data 

2D spherical coordinates

The framework learns in the function space and is resolution-invariant
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Methods – Geometry-Informed Network

10

RF data 

2D spherical coordinates

The framework learns in the function space and is resolution-invariant

10s scan = 400 vertical lines
0.5s scan = 20 lines (visualization)

Limited view (1/3)

• RF signal is 3D (𝜃, 𝜙, 𝑡)
• We use spherical coordinates to simplify computation
• The neural operator framework is resolution-agnostic
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Methods - Test-Time Optimization
• After training the ML model, we can use test-time optimization to further improve 

reconstruction performance for a sample

• Compared to PDE loss: PDE loss is optimized for all training images

Solver Optimized on Neural Representations
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Simulation Results (3k)
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setup    adjoint    iterative         NO      NO+test time opt.     GT

metric: cosine similarity 
visualization: maximum projection on z-plane

run time:~20s ~2500s, coverage 0.1s <60s

1k results pending



Reducing Sim and Real Gap (1k)
Same object, simulated RF and real RF
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Sensor-specific rescaling

awgn10db rescaling



Experiments: Phantom Data
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• Model first trained on 10k simulated samples
• Fine-tuned on one phantom combined with point source

Fine-tune



Experiments: Phantom Data
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Experiments: Phantom Data
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Summary
• Conventional solver needs to be tuned. 

Tuning removes noise and accurate 
phantom reconstruction simultaneously.

 
• Solvers needs to be tuned for individual 

phantom and individual setting. 
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• ML has accurate reconstruction with 
less noise.

• ML does not need individual-tuning.

• Compression rate: on real phantom, ML can reduce the full 10s scan time to 1s, or 
use 1/3 limited angle (120°). (Note the phantom structures are simpler.)


