Neural Operators Accelerate 3D Photoacoustic Computed Tomography

Jiayun Wang, Yousuf Aborahama, ..., Lihong V. Wang*, Anima Anandkumar* Caltech

October 2024

Hardware: 1k System (w/ rotated arcs) Setup

High-speed 3D PACT (2021)

Motivation: Compressed Sensing PACT

- Consistent reconstruction from undersample measurement
 - Reduce scan time
 - Low-cost PACT system (with fewer transducers)
 - Limited angle

Measurement Ψ

The Forward and Inverse Problem

 $\nabla^2 \Psi(x) + k$

wave function

Forward: Source to observed RF

Numerically, the forward model is $\Psi(x) = AP(x)$, A is the forward operator

- **Inverse:** Observed RF to reconstruct source
 - Goal: learn an inverse operator with ML

Inverse operator A* is computation-expensive

The imaging process be considered as solving the following Helmholtz equation

wave number

$$k^2 \Psi(x) = \mathbf{j} w P(x)$$

source

 $P(x) \rightarrow \Psi(x)$

 $\Psi(x) \rightarrow \widehat{P}(x)$

which reconstructs high-quality image P(x)

Conventional Solver and ML

- Back projection solver (1 step)
- $\widehat{P} = A^* \Psi$

Conventional Solver and ML

- Back projection solver (1 step)
- Iterative solver (5-10 steps)

$$\hat{P} = \arg\min_{P \ge 0} \|AP - \Psi\|^2 + \mathcal{R}(P),$$

where $A: \mathbb{R}^N \to \mathbb{C}^M$, $P \in \mathbb{R}^N$, and $\Psi \in \mathbb{C}^M$, with $N = 200 \times 200 \times 160$ and M being the number of transducers multiplied by the number of frequency modes (149). $\mathcal{R}(P)$ is a regularizer like TV regularization.

A can be as large as $15k \times 6k$ (10s scan)

ML learns the inverse operator to reconstruct source with parameter Θ

 $\hat{P} = A^* \Psi$

 $\hat{P} = f_{\Theta}(\Psi)$

Methods – Overview Helmholtz Equation

Methods – Geometry-Informed Network

- RF signal is 3D (θ, ϕ, t)
- We use spherical coordinates to simplify computation
- The neural operator framework is resolution-agnostic

The framework learns in the function space and is resolution-invariant

Methods – Geometry-Informed Network

- RF signal is 3D (θ, ϕ, t)
- We use spherical coordinates to simplify computation
- The neural operator framework is resolution-agnostic

The framework learns in the function space and is resolution-invariant

Methods - Test-Time Optimization Solver Optimized on Neural Representations

• After training the ML model, we can use test-time optimization to further improve reconstruction performance for a sample

Runtime (s)

 $\min \left\| A\widehat{P}(x) - \Psi(x) \right\|_2 = \min_{\theta} \|Af_{\theta}(\Psi(x)) - \Psi(x)\|_2$ Compared to PDE loss: PDE loss is optimized for all training images Test time optimization with RF SNR=3dB GT 0.95 0.90 pred (%) <u>e</u> ^{0.85} 0.80 GT 0.75 pred 0.70 60 20 40 10 30 50 70

Simulation Results (3k)

metric: cosine similarity visualization: maximum projection on z-plane

1k results pending

Reducing Sim and Real Gap (1k) Same object, simulated RF and real RF

Experiments: Phantom Data

Arc-shaped ultrasonic array

- Model first trained on 10k simulated samples
- Fine-tuned on one phantom combined with point source

14

Experiments: Phantom Data

* sample 3x on elevation

Experiments: Phantom Data

Summary

- Conventional solver needs to be tuned. Tuning removes noise and accurate phantom reconstruction simultaneously.
 ML has accurate reconstruction with less noise.
- Solvers needs to be tuned for individual
 ML does not need individual-tuning phantom and individual setting.
- Compression rate: on real phantom, ML can reduce the full 10s scan time to 1s, or use 1/3 limited angle (120°). (Note the phantom structures are simpler.)

